[1] I.M. Idriss, G. Fiegel, M.B. Hudson, P.K. Mundy, R. Herzig, Seismic response of the Operating Industries landfill, Earthquake design and performance of solid waste landfills, ASCE Geotechnical Special Publication No.54, editors M.Y. Yegian, W.D. Liam Finn, pp.83-118., (1995).
[2] D.P. Zekkos, Evaluation of static and dynamic properties of municipal solid-waste, University of California, Berkeley, (2005).
[3] B. Ramaiah, G. Ramana, E. Kavazanjian Jr, N. Matasovic, B. Bansal, Empirical Model for Shear Wave Velocity of Municipal Solid Waste In Situ, Journal of Geotechnical and Geoenvironmental Engineering, (2015) 06015012.
[4] A. Abreu, O. Gandolfo, O.M. Vilar, Characterizing a Brazilian sanitary landfill using geophysical seismic techniques, Waste Management, 53 (2016) 116-127.
[5] I. Stokoe, Field Testing Method for Evaluating the Small-Strain Shear Modulus and Shear Modulus Nonlinearity of Solid Waste, Geotechnical Testing Journal, 38(4) (2015) 1-15.
[6] D. Zekkos, A. Sahadewa, R.D. Woods, K.H. Stokoe, Development of Model for Shear-Wave Velocity of Municipal Solid Waste, Journal of Geotechnical and Geoenvironmental Engineering, 140(3) (2013) 04013030.
[7] I. Towhata, Geotechnical earthquake engineering, Springer Science & Business Media, (2008).
[8] G. Tchobanoglous, H. Theisen, S.A. Vigil, V.M. Alaniz, Integrated solid waste management: engineering principles and management issues, McGraw-Hill New York, (1993).
[9] B. Ramaiah, G. Ramana, E. Kavazanjian Jr, N. Matasovic, B. Bansal, Empirical Model for Shear Wave Velocity of Municipal Solid Waste In Situ, Journal of Geotechnical and Geoenvironmental Engineering, (2015) 06015012.
[10] M. Khaleghi, In-situ CSWS test to determine the effect of aging on shear wave velacity of municipal solid waste (Case study: Kahrizak Landfill), Iran University of Science and Technology, (2011).
[11] N. Dixon, D. Jones, R. Whittle, Mechanical properties of household waste: In situ assessment using pressuremeters, in: Proceedings Sardinia, (1999), pp. 453-460.
[12] J.J. Lee, Dynamic Characteristics of Municipal Solid Waste (MSW) in the Linear and Nonlinear Strain Ranges The University of Texas at Austin December (2007).
[13] B. SEO, Compositional effect on the mechanical propertise of material solid waste, Arizona state university, (2008).
[14] P. Yuan, E. Kavazanjian, W. Chen, B. Seo, Compositional effects on the dynamic properties of municipal solid waste, Waste management, 31(12) (2011) 2380-2390.
[15] Evaluation the Tehran Municipal solid waste (MSW) management, Tehran Urban Research and Planning Center (TRPC), (2015). (In Persian)
[16] D. Hoornweg, P. Bhada-Tata, What a waste: a global review of solid waste management, (2012).
[17] T.L. Zhan, Y. Chen, W. Ling, Shear strength characterization of municipal solid waste at the Suzhou landfill, China, Engineering Geology, 97(3-4) (2008) 97-111.
[18] O. Del Greco, A. Fassino, A. GODIOHTT, Seismic investigation for the assessment of the elastic settlement in MSW landfill, (2007).
[19] P. Yuan, E. Kavazanjian Jr, W. Chen, B. Seo, Compositional effects on the dynamic properties of municipal solid waste, Waste management, 31(12) (2011) 2380-2390.
[20] S. Yamashita, T. Fujiwara, T. Kawaguchi, T. Mikami, Y. Nakata, S. Shibuya, International parralel test on the measurement of Gmax using bender elements, Organized by Technical Comittee, 29 (2007).
[21] J. Marjanovic, The study of shear and longitudinal velocity measurements of sands and cohesive soils, Massachusetts Institute of Technology, (2012).
[22] D 4767-04: Standard test method for consolidated undrained triaxial compression test for cohesive soils, in: ASTM Int., West Conshohocken, Pa, (2004).
[23] J. Li, D. Ding, Nonlinear elastic behavior of fiber-reinforced soil under cyclic loading, Soil Dynamics and Earthquake Engineering, 22(9-12) (2002) 977-983.