[1] K.H. Roscoe, A. Schofield, C. Wroth, On the yielding of soils, Geotechnique, 8(1) (1958) 22-53.
[2] A. Schofield, P. Wroth, Critical state soil mechanics, McGraw-Hill London, 1968.
[3] M. Pastor, O. Zienkiewicz, K. Leung, Simple model for transient soil loading in earthquake analysis. II. Non-associative models for sands, International Journal for Numerical and Analytical Methods in Geomechanics, 9(5) (1985) 477-498.
[4] C. di Prisco, R. Nova, A constitutive model for soil reinforced by continuous threads, Geotextiles and Geomembranes, 12(2) (1993) 161-178.
[5] K. Been, M.G. Jefferies, A state parameter for sands, Géotechnique, 35(2) (1985) 99-112.
[6] S.R. Imam, N.R. Morgenstern, P.K. Robertson, D.H. Chan, A critical-state constitutive model for liquefiable sand, Canadian geotechnical journal, 42(3) (2005) 830-855.
[7] S.R. IMAM, N.R. Morgenstern, P.K. Robertson, D.H. CHAN, Yielding and flow liquefaction of loose sand, Soils and Foundations, 42(3) (2002) 19-31.
[8] S.R. IMAM, D.H. Chan, P.K. Robertson, N.R. MORGENSTERN, Effect of anisotropic yielding on the flow liquefaction of loose sand, Soils and foundations, 42(3) (2002) 33-44.
[9] D.M. Wood, K. Belkheir, Strain softening and state parameter for sand modelling, Geotechnique, 44(2) (1994) 335-339.
[10] M.T. Manzari, Y.F. Dafalias, A critical state two-surface plasticity model for sands, Geotechnique, 47(2) (1997) 255-272.
[11] Z. Mroz, On the description of anisotropic workhardening, Journal of the Mechanics and Physics of Solids, 15(3) (1967) 163-175.
[12] W.D. Iwan, On a class of models for the yielding behavior of continuous and composite systems, Journal of Applied Mechanics, 34(3) (1967) 612-617.
[13] O. Zienkiewicz, Generalized plasticity formulation and application to geomechanics, Mech. Eng. Materials, (1984) 655-679.
[14] Y. Dafalias, On cyclic and anisotropic plasticity, A General model, (1975).
[15] Y. Dafalias, E. Popov, A model of nonlinearly hardening materials for complex loadingEin Modell für Werkstoffe mit nichtlinearer Verfestigung unter zusammengesetzter Belastung, Acta mechanica, 21(3) (1975) 173-192.
[16] Y. Dafalias, A modell for soil behavior under monotonic and cyclic loading conditions, in: Structural mechanics in reactor technology. Transactions. Vol. K (a), 1979.
[17] J.-P. Bardet, Bounding surface modeling of cyclic sand behavior, in: Proceedings of the Workshop on Constitutive Laws for the Analysis of Fill Retention Structures. Edited by E. Evgin, Ottawa, 1987, pp. 1-19.
[18] Y. Dafalias, L. Herrman, A. Anandarajah, Cyclic loading response of cohesive soils using a bounding surface plasticity model, (1981).
[19] H.I. Ling, S. Yang, Unified sand model based on the critical state and generalized plasticity, Journal of Engineering Mechanics, 132(12) (2006) 1380-1391.
[20] M. Taiebat, Y.F. Dafalias, SANISAND: Simple anisotropic sand plasticity model, International Journal for Numerical and Analytical Methods in Geomechanics, 32(8) (2008) 915-948.
[21] Y. Dafalias, M. Taiebat, SANISAND-Z: zero elastic range sand plasticity model, Geotechnique, 66(12) (2016) 999-1013.
[22] M.E. Kan, H.A. Taiebat, A bounding surface plasticity model for highly crushable granular materials, Soils and Foundations, 54(6) (2014) 1188-1201.
[23] K. Hashiguchi, Cyclic plasticity models: critical reviews and assessments, in: Foundations of Elastoplasticity: Subloading Surface Model, Springer, 2017, pp. 235-256.
[24] D. Gallipoli, A. Bruno, A bounding surface compression model with a unified virgin line for saturated and unsaturated soils, Géotechnique, 67(8) (2017) 703-712.
[25] K. Ishihara, F. Tatsuoka, S. Yasuda, Undrained deformation and liquefaction of sand under cyclic stresses, Soils and foundations, 15(1) (1975) 29-44.
[26] Y. Javanmardi, Application of a Critical State Bounding Surface Model for Cyclic Response of Saturated Sand (in Persian), Amirkabir University of Technology, 2011.
[27] R.S. Crouch, J.P. Wolf, Y.F. Dafalias, Unified critical-state bounding-surface plasticity model for soil, Journal of engineering mechanics, 120(11) (1994) 2251-2270.
[28] Y.F. Dafalias, M.T. Manzari, Simple plasticity sand model accounting for fabric change effects, Journal of Engineering mechanics, 130(6) (2004) 622-634.
[29] S. Nemat-Nasser, Y. Tobita, Influence of fabric on liquefaction and densification potential of cohesionless sand, Mechanics of Materials, 1(1) (1982) 43-62.
[30] J.A. Yamamuro, P.V. Lade, Steady-state concepts and static liquefaction of silty sands, Journal of geotechnical and geoenvironmental engineering, 124(9) (1998) 868-877.
[31] Y. Vaid, E. Chung, R. Kuerbis, Stress path and steady state, Canadian Geotechnical Journal, 27(1) (1990) 1-7.
[32] K. Been, M. Jefferies, J. Hachey, Critical state of sands, Geotechnique, 41(3) (1991) 365-381.
[33] K. Ishihara, Liquefaction and flow failure during earthquakes, Geotechnique, 43(3) (1993) 351-451.
[34] R. Verdugo, K. Ishihara, The steady state of sandy soils, Soils and foundations, 36(2) (1996) 81-91.
[35] M. Yoshimine, K. Ishihara, Flow potential of sand during liquefaction, Soils and Foundations, 38(3) (1998) 189-198.
[36] X.-S. Li, Y. Wang, Linear representation of steady-state line for sand, Journal of geotechnical and geoenvironmental engineering, 124(12) (1998) 1215-1217.
[37] D. Sheng, Y. Yao, J.P. Carter, A volume–stress model for sands under isotropic and critical stress states, Canadian Geotechnical Journal, 45(11) (2008) 1639-1645.
[38] F.E. Richart, J.R. Hall, R.D. Woods, Vibrations of soils and foundations, (1970).
[39] X. Li, Y.F. Dafalias, Dilatancy for cohesionless soils, Geotechnique, 50(4) (2000) 449-460.
[40] R. Verdugo, Characterization of sandy soil behavior under large deformation, PhD Thesis. Tokyo, Japan, University of Tokyo, 1992.
[41] T.B.S. Paradhan, The behavior of sand subjected to monotonic and cyclic loadings, PhD Thesis. Kyoto, Japan, Kyoto University, 1990.