منحنی پاسخ زمین برای تاج، دیواره و کف تونل‌های سطحی تحت میدان تنش غیرایزوتروپ: محدوده کاربرد حل تحلیلی

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده فنی، گروه عمران، دانشگاه زنجان، زنجان، ایران

چکیده

منحنی پاسخ زمین یکی از اجزای روش همگرایی همجواری در تحلیل اندرکنش حائل سنگ است که برای تعیین جابجایی‌ها در پیرامون تونل حفر شده به روش جدید اتریشی به کار می‌رود. حل تحلیلی منحنی پاسخ زمین براساس فرض میدان تنش برجا ایزوتروپ می‌باشد و قابل کاربرد برای تونل‌های عمیق است. اما امروزه تونل‌های شهری در سطح و اغلب تحت نسبت تنش‌های برجا غیرایزوتروپ حفر می‌شوند. در این مقاله برای مدل‌های دوبعدی با هندسه و مشخصات محیطی مشخص، منحنی‌های پاسخ زمین برای عمق‌های مختلف و همچنین نسبت تنش‌های برجا مختلف، به دو روش تعیین می‌شوند: 1-با استفاده از حل تحلیلی و معادل‌سازی میدان تنش غیرایزوتروپ به یک میدان تنش ایزوتروپ. 2- حل عددی. سپس نتایج این تحلیل‌ها با یکدیگر مقایسه و محدوده کاربرد حل تحلیلی منحنی پاسخ زمین تعیین می‌شود. مطابق با نتایج، جابجایی‌های دیواره تونل بیشتر از نسبت تنش‌های برجا اولیه متاثر می‌شود تا عمق قرارگیری تونل. همچنین جابجایی‌های بدست آمده از حل عددی برای تاج و کف تونل، نسبت به دیواره تونل، انحراف بیشتری از حل تحلیلی دارند. تنها جابجایی که میتوان با دقت مناسبی از حل تحلیلی برای تونل‌های سطحی بدست آورد، جابجایی دیواره تونل تحت تنش‌های ایزوتروپ است. جابجائی‌های تاج و کف تونل تحت شرایط ایزوتروپ و برای عمق‌های بیش از 14 برابر شعاع تونل با دقت مناسبی می‌توانند از حل تحلیلی بدست آیند، اما با افزایش نسبت تنش‌های برجا، حل تحلیلی و عددی از یکدیگر بیشتر و بیشتر فاصله می‌گیرند حتی برای تونل‌های عمیق.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Ground Response Curve for the Crown, Wall and Floor of Shallow Tunnels under Non-Isotropic Stress Field: Application range of analytical Solutions

نویسندگان [English]

  • A. Lakirouhani
  • H. Vojoudi
Department of Civil Engineering, University of Zanjan, Zanjan, Iran
چکیده [English]

Ground response curve is a component of convergence-confinement method in rock support interaction analysis which is used for determining the displacement around tunnels excavated by New Austrian Tunneling Method. Analytical solution of the ground response curve is based on the assumption of isotropic in-situ stress field and is applicable for deep tunnels. Today, urban tunnels mainly excavated in shallow levels and often under anisotropic in-situ stress field. In this paper, for 2D models with geometry and specific environmental characteristics, the response curves for different depths and different in-situ stress ratios, are determined in two ways: 1) By analytical solution and using anisotropic stress field equivalent to an isotropic stress field. 2) Numerical solution. The results of these analyzes were compared with together and range of application of analytical solution of the ground response curve is determined. Based on the results, tunnel wall displacement is mainly influenced by the ratio of the initial in-situ stresses in comparison of tunnel depth. The results showed that crown and floor numerical displacements deviate more from analytical solution than the wall displacement. The only displacement that can be accurately obtained from the analytical solution for the shallow tunnel is the displacement of the tunnel wall under isotropic stress. In the case of isotropic stress field, the results given by the analytical solution agree with the numerical ones at depths higher than 14 times radius of the tunnel. The difference between numerical and analytical solutions becomes higher while increasing the initial in-situ stress ratio, even for deep tunnels.

کلیدواژه‌ها [English]

  • Ground Response Curve
  • Shallow Tunnel
  • In-Situ Stress Ratio
  • Analytical Solution
[1] C. Carranza-Torres, C. Fairhurst, The elasto-plastic response of underground excavations in rock masses that satisfy the Hoek–Brown failure criterion, International Journal of Rock Mechanics and Mining Sciences, 36(6) (1999) 777-809.
[2] C. Carranza-Torres, C. Fairhurst, Application of the convergence-confinement method of tunnel design to rock masses that satisfy the Hoek-Brown failure criterion, Tunnelling and Underground Space Technology, 15(2) (2000) 187-213.
[3] P. Gesta, J. Kreisel, P. Londe, C. Louis, M. Panet, Tunnel stability by convergence-confinement method, Underground Space, 4(4) (1980) 225-232.
[4] P. Gesta, Recommendations for use of convergence-confinement method, AFTES, Groupe de travail, (7) (1993) 206-222.
[5] E.T. Brown, J.W. Bray, B. Ladanyi, E. Hoek, Ground response curves for rock tunnels, Journal of Geotechnical Engineering, 109(1) (1983) 15-39.
[6] Y.-W. Pan, Y.-M. Chen, Plastic zones and characteristics-line families for openings in elasto-plastic rock mass, Rock Mechanics and Rock Engineering, 23(4) (1990) 275-292.
[7] E. Hoek, Practical rock engineering. 2007, Online. ed. Rocscience, (2007).
[8] C. Carranza-Torres, J. Labuz, Class notes on underground excavations in rock, Topic, 8 (2006) 1-6.
[9] F.D. ITASCA, Version 5, Fast Lagrangian Analysis of Continua in 2 Dimensions, ITASCA Consulting Group Inc, (2005).