[1] R.A. Embacher, M.B. Snyder, Life-cycle cost comparison of asphalt and concrete pavements on low-volume roads; case study comparisons, Transportation research record, 1749(1) (2001) 28-37.
[2] UoS (University of Sheffield), Thin wire reinforcement for concrete, Br Patent Application, No 0130852.7 & 0511012.7 (2005).
[3] D. Mostofinejad, Reinforced Concrete Structure, Arkan-e Danesh publication, Volume 1 (2017) (in Persian).
[4] Committee of concrete chemical additives, iran concrete Institute, the application of chemical additives in concrete, yazda publication (2014) (in Persian).
[5] J. Zhang, V.C. Li, Influences of fibers on drying shrinkage of fiber-reinforced cementitious composite, Journal of engineering mechanics, 127(1) (2001) 37-44.
[6] S.H. Kwon, S.P. Shah, Prediction of early-age cracking of fiber-reinforced concrete due to restrained shrinkage, ACI Materials Journal, 105(4) (2008) 381.
[7] Y.H. Huang, Pavement Analysis and Design, second ed., Pearson Prentice Hall, 2004.
[8] .M. Ruiz, R.O. Rasmussen, G.K. Chang, J.C. Dick, P.K. Nelson, Computer-based guidelines for concrete pavements, volume II: design and construction guidelines and HIPERPAVE II user’s manual, Federal Highway Administration, FHWA–HRT–04–122 (2005).
[9] C.J. Lee, D.A. Lange, Y.S. Liu, Prediction of moisture curling of concrete slab, Materials and structures, 44(4) (2011) 787-803.
[10] Y. Jane Jiang, S.D. Tayabji, Mechanistic evaluation of test data from long-term pavement performance jointed plain concrete pavement test sections, Transportation research record, 1629(1) (1998) 32-40.
[11] P.K. Mehta, P.J. Monteiro, Concrete microstructure, properties and materials, third ed., McGraw-Hill, 2017.
[12] M.J. Rosen, J.T. Kunjappu, Surfactants and Interfacial Phenomena, John Wiley & Sons, Inc., Hoboken, New Jersey, (2012).
[13] L. Maia, H. Figueiras, S. Nunes, M. Azenha, J. Figueiras, Influence of shrinkage reducing admixtures on distinct SCC mix compositions, Construction and Building Materials, 35 (2012) 304-312.
[14] J. Mora-Ruacho, R. Gettu, A. Aguado, Influence of shrinkage-reducing admixtures on the reduction of plastic shrinkage cracking in concrete, Cement and Concrete Research, 39(3) (2009) 141-146.
[15] .J. Lee, Y.Y. Kim, Durability of latex modified concrete mixed with a shrinkage reducing agent for bridge deck pavement, International Journal of Concrete Structures and Materials, 12(1) (2018) 23.
[16] T. Deboodt, T. Fu, J.H. Ideker, Evaluation of FLWA and SRAs on autogenous deformation and long-term drying shrinkage of high performance concrete, Construction and Building Materials, 119 (2016) 53-60.
[17] Y. Wehbe, A. Ghahremaninezhad, Combined effect of shrinkage reducing admixtures (SRA) and superabsorbent polymers (SAP) on the autogenous shrinkage, hydration and properties of cementitious materials, Construction and Building Materials, 138 (2017) 151-162.
[18] W. Zuo, P. Feng, P. Zhong, Q. Tian, J. Liu, W. She, Effects of a novel polymer-type shrinkage-reducing admixture on early age microstructure evolution and transport properties of cement pastes, Cement and Concrete Composites, 95 (2019) 33-41.
[19] C. Qiao, W. Ni, J. Weiss, Transport due to diffusion, drying, and wicking in concrete containing a shrinkage-reducing admixture, Journal of Materials in Civil Engineering, 29(9) (2017) 04017146.
[20] B. Hatami, A.M. Ramezanianpour, A.S. Daryan, Investigation on the Effect of Shrinkage Reducing Admixtures on Shrinkage and Durability of High-Performance Concrete, Journal of Testing and Evaluation, 46(1) (2017) 141-150.
[21] A. Bagheri, A. Jamali, M. Pourmir, H. Zanganeh, The Influence of Curing Time on Restrained Shrinkage Cracking of Concrete with Shrinkage Reducing Admixture, Advances in Civil Engineering Materials, 8(1) (2019) 596-610.
[22] S. Chen, H. Zhao, Y. Chen, D. Huang, Y. Chen, X. Chen, Experimental study on interior relative humidity development in early-age concrete mixed with shrinkage-reducing and expansive admixtures, Construction and Building Materials, 232 (2020) 117204.
[23] Building and housing research center, The national Method for concrete mix design, BHRC Publication, No. S-479 (2008) (in Persian).
[24] ISIRI 3206, Concrete-Determination of compressive strength of test specimens, Institute of standards and Industrial research of Iran (1992) (in Persian).
[25] ASTM C293, Standard Test Method for Flexural Strength of Concrete (Using Simple Beam with Center-Point Loading), ASTM international, (2016).
[26] FM5-578, Florida Method of Test for Concrete Resistivity as an Electrical Indicator of its Permeability, Florida Department of Transportation, (2004).
[27] BS-EN 13036-4, Road and airfield surface characteristics. Test methods. Method for measurement of slip/skid resistance of a surface: The pendulum test, Slovak: Povrchové vlastnosti vozoviek. Skúšobné metódy. Časť, 4, (2011).
[28] ASTM C157, Standard Test Method for Length Change of Hardened Hydraulic-Cement Mortar and Concrete, ASTM international, (2014).
[29] ASTM C1581, Standard Test Method for Determining Age at Cracking and Induced Tensile Stress Characteristics of Mortar and Concrete under Restrained Shrinkage, ASTM international, (2016).
[30] J. Saliba, E. Rozière, F. Grondin, A. Loukili, Influence of shrinkage-reducing admixtures on plastic and long-term shrinkage, Cement and Concrete Composites, 33(2) (2011) 209-217.
[31] P. Lura, B. Pease, G.B. Mazzotta, F. Rajabipour, J. Weiss, Influence of shrinkage-reducing admixtures on development of plastic shrinkage cracks, ACI materials journal, 104(2) (2007) 187.
[32] T.F. Yuan, S.K. Kim, K.T. Koh, Y.S. Yoon, Synergistic benefits of using expansive and shrinkage reducing admixture on high-performance concrete, Materials, 11(12) (2018) 2514.