بررسی تأثیر ترک بر رفتار دیوار برشی فولادی تحت بار جانبی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 واحد دره شهر، دانشگاه آزاد اسلامی، دره شهر، ایران

2 دانشکده مهندسی عمران، دانشگاه علم و صنعت ایران، تهران، ایران

چکیده

مطالعات آزمایشگاهی و عددی انجام شده بر روی دیوار برشی فولادی و همچنین عملکرد موفق آن در زلزله‌های گذشته، این سیستم را به عنوان یک سیستم کارا در برابر بارهای جانبی معرفی کرده است. هر چند مطالعات وسیعی (به جز مطالعات در خصوص تاثیر ترک بر رفتار دیوار برشی فولادی) بر روی این سیستم انجام شده‌است، اما همچنان ناشناخته‌هایی در خصوص این سیستم وجود دارد. تاثیر ترک بر رفتار دیوار برشی فولادی یکی از ناشناخته‌ها در خصوص دیوار برشی فولادی است که به دلیل پیچیدگی‌های تحلیل غیرخطی ترک و گسترش آن حتی با استفاده از نرم افزارهای المان محدود، به طور جامع مورد بحث بررسی قرار نگرفته است. از طرفی با توجه ضخامت کم ورق فولادی و ماهیت جوش، وجود ترک در این سیستم غیرقابل انکار و اجتناب ناپذیر است. بنابراین در این مقاله، تاثیر ترک‌های میانی و کناری و گسترش آنها بر رفتار لرزه‌ای دیوار برشی فولادی مورد بررسی قرار گرفته است. نتایج نشان می‌دهد که ترک‌های میانی در ورق فولادی اثر مخرب تری نسبت به ترکهای کناری دارد. وجود ترک‌های میانی با طول زیاد باعث می‌شود که سیستم رفتار غیرالاستیک را تجربه نکند و در ناحیه الاستیک گسیخته شود. همچنین گسترش ترک تاثیر کمی ‌بر سختی الاستیک دارد. با توجه به پیچیدگی‌های ترک بر رفتار دیوار برشی فولادی، معادلات لازم برای دستیابی به نمودار پوش آور آن ارائه شده‌است که بدون نیاز به مدل‌سازی المان محدود، رفتار سیستم با دقت بسیار بالا قابل پیش‌بینی است.  

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Influence of crack on the behavior of steel plate shear wall under lateral loading

نویسندگان [English]

  • Ali Ghamari 1
  • Vahid Broujerdian 2
1 Department of Civil Engineering, Darreh Shahr Branch, Islamic Azad University, Darreh Shahr, Iran
2 Department of Civil Engineering, Iran University of Science and Technology, Tehran, Iran
چکیده [English]

Experimental and numerical studies of Steel Plate Shear Wall (SPSW) and its successful performance under past earthquakes have introduced this system as a lateral bearing system. There is a lot of unknown information about SPSW despite reported numerous studies. The effect of crack on the SPSW behavior is one of the unknown aspects of SPSW. Although crack had affected some experimental tests, its effect on the SPSW behavior has not been investigated comprehensively. Even in numerical studies, due to the complicity of the crack in modeling and analyzing especially in nonlinear studies, it has not been evaluated comprehensively. Because of the thin steel plate and inherent welding, the emerging of the crack in SPSW is deniable. Therefore, in this paper, the effect of central and edge cracks on the behavior of SPSW was studied numerically and parametrically. Numerical results indicated that the central crack is more destructive than edge cracks in case of fracture, ultimate strength, and energy absorption. Although small cracks do not have a considerable effect on the behavior of SPSW, the central crack with a long length leads the SPSW to fracture in the elastic zone. Moreover, although long edge crack reduces ultimate strength and energy absorption, it does not lead the SPSW to fracture. Due to the difficulty of crack modeling and crack analysis in SPSW, the necessary relations were proposed to obtain a pushover diagram without needing to modeling. The proposed relation estimates the pushover diagram of the system in good agreement with FE results.

کلیدواژه‌ها [English]

  • Steel Shear Wall
  • Crack
  • Seismic Behavior
  • Stiffness
  • Strength
[1] M. Gholipour, M. M. Alinia, Behavior of multi-story code-designed steel plate shear wall structures regarding bay width. Journal of Constructional Steel Research, 122 (2016) pp. 40–56.  
[2] R.G. Driver. G.L. Kulak. D.J.L Kennedy. A.E. Elwi, Cyclic tests of four-story steel plate shear wall. Journal of Structural Engineering ASCE, 124(2) (1998) pp. 112_20.  
[3] A. Astaneh-Asl. Seismic behavior and design of steel plate shear walls. Steel tips report: Structural Steel Educational Council, (2000)
[4] J. Shishkin, R. Driver, G. Driver, Analysis of Steel Plate Shear Walls Using The Modified Strip Model. Structural Engineering Report No. 261. University of Alberta, (2013).
[5] A.R. Rahai. M. Alipour. Behavior and Characteristics of Innovative Composite Plate Shear Walls. The Twelfth East Asia-Pacific Conference on Structural Engineering and Construction. Procedia Engineering, 14 (2011) pp. 3205–3212.
[6] D. Dubina, F. Dinu, Experimental evaluation of dual frame structures with thin-walled steel panels. Thin-Walled Structures, 78(2014) pp. 57–69.
[7] C. Lin, K. Tsai, Y. Lin, K. Wang, B. Qu, M. Bruneau, Full Scale Steel Plate Shear Wall: NCREE/MCEER Phase I Tests". Proceeding of the 9th Canadian Conference on Earthquake Engineering. Ottawa. Canada. (2007).
[8] M. Guendel, B. Hoffmeister, M. Feldmann, Experimental and numerical investigations on Steel Shear Walls for seismic Retrofitting”. Proceedings of the 8th International Conference on Structural Dynamics. EURODYN. (2011).
[9] J. Berman, M. Bruneau, Experimental investigation of light‐gauge steel plate shear walls. ASCE Journal of Structural Engineering, 131 (2005), pp. 259‐267.
[10] M. Kharrazi, Fish plate behavior on Steel plate shear wall. Canadian journal of civil engineering, (2005), 96-108.           
[11] M. Yaghoubshahi, M.M. Alinia. N. Bonora. N. On the post buckling of flawed shear panels considering crack growth effect. Thin-Walled Structures. 97 (2015), pp.186–198.  
[12] A. N. Guz. M.S.H. Dyshel, Stability and residual strength of panels with straight and curved cracks. Theor. Appl. Fract.Mech, 41(2004) pp. 95–101.        
[13] J.K. Paik, Residual ultimate strength of steel plates with longitudinal cracks under axial compression–experiments.Ocean Eng. 35(2008) pp. 1775–1783.
[14] J.K. Paik, Residual ultimate strength of steel plates with longitudinal cracks under axial compression—nonlinear finite element method investigations. Ocean Eng, 36(2009), 266–276.
[15] R. Brighenti, Influence of a central straight crack on the buckling behaviour of thin plates under tension compression or shear loading, International Journal of  Mechanical Material Design, 6 (2010) pp. 73–87. 
[16] Alinia. M.M.. Hosseinzadeh. S.A.A, Habashi. H.R.: Numerical modelling for buckling analysis of cracked shear panels. Thin-Walled Structures, 4 (2007a) pp. 1058–1067.
[17] M.M. Alinia, S.A.A. Hoseinzadeh, H.R. Habashi, Influence of central cracks on buckling and postbuckling behavior of shear panels. Thin-Walled Structures, 45 (2007b) pp. 422–431
[18] M.M. Alinia, S.A.A. Hoseinzadeh, H.R. Habashi, Buckling and post-buckling strength of shear panels degraded by near border cracks, Journal of Constructional Steel Reseaach, 64 (2008) pp.1483–1494.
[19] G. C.Sih, Y. D.Lee, Tensile and compressive buckling of plates weakened by cracks. Theor Appl Fract Mech 6 (1986) pp. 29–38.
[20] D.Shaw, Y. H. Huang, Buckling behaviour of a central cracked thin plate under tension. Eng Fract Mech, 35 (1990) pp. 1019–27.
[21] E. Riks, C.C. Rankin, F. A. Bargon, Buckling behaviour of a central crack in a plate under tension. Eng Frac Mech, 43 (1992) pp. 529–48.
[22] M. M. Alinia, M. Dastfan, Behaviour of thin steel plate shear walls regarding frame members, Journal of Constructional Steel Reseach, 62(2006) pp. 730–738.
[23] E. Byklum, J. Amdahl, A simplified method for elastic large deflection analysis of plates and stiffened panels due to local buckling. Thin-Walled Structures. 40 (2002) pp. 925–953.
[24] C. W. Bert, K. K. Devarakonda, Buckling of rectangular plates subjected to nonlinearly distributed in-plane loading. Journal of Solids Structures, 40. (2003) pp. 4097–4106.
[25] M. R. Khedmati, P. Edalat, M. Javidruzi, Sensitivity analysis of the elastic buckling of cracked plate elements under axial compression. Thin-Walled Structures, 47 (2009) pp. 522–536.
[26] J. K. Paik, Y. V. Satish Kumar, J. M. Lee, Ultimate strength of cracked plate elements under axial compression or tension. Thin-Walled Structures, 43 (2005), 237–72.
[27] N. Friedl, F. G. Rammerstorfer, F. D. Fischer, Buckling of stretched strips. Computure and Structures, 78 (2000). 185–190.         
[28] A.N. Guz, M. Dyshel, Fracture and buckling of thin panels with edge crack in tension. Theorical Applied. Fracture. Mechanic, 36(2001) pp.57–60.
[29] R. Brighenti, Buckling of cracked thin-plates under tension and compression. Thin-Walled Structures, 43(2005) pp. 209–224.
[30] T. Siegmund, A numerical study of transient fatigue crack growth by use of an irreversible cohesive zone model. International Journal of Fatigue, 26 (9) (2004) pp. 929–939.
[31] K.L. Roe, T. Siegmund, An irreversible cohesive zone model for interface fatigue crack growth simulation. Eng. Fract. Mech, 70(2) (2003) pp. 209–232.
[32] J.L. Bouvard, J.L. Chaboche, F. Feyel. A cohesive zone model for fatigue and creep–fatigue crack growth in single crystal super alloys. Int. J. Fatigue31(5) (2009) pp. 868–879.
[33] P.F. Liu, S.J. Hou. J.K. Chu, Finite element analysis of postbuckling and delamination of composite laminates using virtual crack closure technique. Compos. Struct.93(6) (2011) pp. 1549–1560.
[34] S. A. Fawaz, Application of the virtual crack closure technique to calculate stress intensity factors for through cracks with an elliptical crack front. Eng. Fract. Mech, 59(3) (1998) pp. 327–342.
[35] G. Servetti, X. Zhang, Predicting fatigue crack growth rate in a welded butt joint: the role of effective R ratio in accounting for residual stress effect. Eng. Fract. Mech. 76(11) (2009) pp. 1589–1602.
[36] T. Belytschko, T. Black, Elastic crack growth in finite elements with minimal remeshing. Int. J. Numer. Methods Eng, 45(5) (1999) pp. 601–620.
[37] T. Belytschko, H. Chen, J. Xu, Dynamic crack propagation based on loss of hyperbolicity and a new discontinuous enrichment. Int. J. Numer. Methods Eng, 58(12) (2003) pp. 1873–1905.
[38] N. Moe¨s, T. Belytschko. T, Extended finite element method for cohesive crack growth. Eng. Fract. Mech.69, (7) (2002) pp. 813–833.
[39] N. Sukumar, N. Moe¨s, B. Moran. Extended finite element method for three-dimensional crack modeling. Int. J. Numer. Methods Eng. 48 (2000) (11) pp. 1549–1570.
[40] N. Sukumar, Z.Y. Huang, J.H. Pre´vost, Partition of unity enrichment for bimaterial interface cracks. International Journal of Numerical Methods Engineering, 59(8) (2003). pp. 1075–1102.
[41] E. Giner, N. Sukuma, J.E. Taranco´n, An Abaqus implementation of the extended finite element method. Eng. Fract. Mech, 76(3) (2009) pp. 347–368.
[42] R.D.S.G. Campilho, M.D. Banea, F.J.P. Chaves, extended finite element method for fracture characterization of adhesive joints in pure mode I. Comput. Mater. Sci, 50(4) (2011) pp. 1543–1549.
[43] G.L. Golewski, P. Golewski, T. Sadowski, Numerical modelling crack propagation under Mode II fracture in plain concretes containing siliceous fly-ash additive using XFEM method. Comput. Mater. Sci, 62(2012). pp. 75–78.
[44] Z.Q. Wang, S. Zhou, J.F. Zhang, Progressive failure analysis of bolted single-lap composite joint based on extended finite element method. Mater. Design, 37 (2012) pp. 582–588.
[45] N. Bonora. A nonlinear CDM model for ductile failure. Eng. Fract. Mech. 58 (2006)11–28.
[46] B. C. Simonsen, R. Tornqvist, Experimental and numerical modelling of ductile crack propagation in large-scale shell structures. Marine Structures, 17 (2004) pp. 1–27.
[47] K. Basler, Strength of plate girders in shear. Trans. ASCE, 128(2) (1963) pp. 683-719.
[48] S. Sabouri-Ghomi, C. Ventura. A. Kharrazi. Shear Analysis and Design of Ductile Steel Plate Walls. Journal of Structural Engineering-ASCE. 12 (2005) pp. 878-889.
[49] Y. Murakami. Stress Intensity Factors Handbook. 1988. 
[50] H.A. Richard, M. Fulland, M. Sander, Theoretical Crack Path Prediction. Blackwell Publishing. (2004).
[51] A. Shukla, Practical fracture mechanics in design (2nd ed.). New York. NY: Marcel Dekker. (2005).