[1] Almeida-costa, A. Benta, Economic and environmental impact study of warm mix asphalt compared to hot mix asphalt, J. Clean. Prod., 112 (2016) 2308–2317.
[2] Lopez, A. Gonzalez, G. Thenoux, G. Sandoval, J. Marcobal, Stabilized emulsions to produce warm asphalt mixtures with reclaimed asphalt pavements, J. Clean. Prod., 209 (2019) 1461–1472.
[3] Gillespie, quantifying the energy used in an asphalt coating plant, University of Strathclyde, 2012.
[4] H. Yu, Z. Leng, Z. Zhou, K. Shih, F. Xiao, Optimization of preparation procedure of liquid warm mix additive modi fi ed asphalt rubber, J. Clean. Prod., 141 (2017) 336–345.
[5] G. Shiva Kumar, S.N. Suresha, State of the art review on mix design and mechanical properties of warm mix asphalt, Road Mater. Pavement Des. (2018).
[6] Y. Sun, W. Wang, J. Chen, Investigating impacts of warm-mix asphalt technologies and high reclaimed asphalt pavement binder content on rutting and fatigue performance of asphalt binder through MSCR and LAS tests, J. Clean. Prod., 219 (2019) 879–893.
[7] Kheradmand, R. Muniandy, L.T. Hua, R.B. Yunus, A. Solouki, An overview of the emerging warm mix asphalt technology, Int. J. Pavement Eng., (2013).
[8] M.C. Rubio, G. Martínez, L. Baena, F. Moreno, Warm mix asphalt: an overview, J. Clean. Prod., 24 (2012) 76–84.
[9] M. Zaumanis, J. Jansen, V. Haritonovs, J. Smirnovs, Development of calculation tool for assessing the energy demand of Warm Mix Asphalt, Procedia - Soc. Behav. Sci., 48 (2012) 163–172.
[10] S. Zhao, B. Huang, X. Shu, M. Woods, Comparative evaluation of warm mix asphalt containing high percentages of reclaimed asphalt pavement, Constr. Build. Mater. 44 (2013) 92–100.
[11] R. West, C. Rodezno, G. Julian, B. Prowell, B. Frank, L. V. Osborn, and T. Kriech, NCHRP Report 779: Field Performance of Warm Mix Asphalt Technologies, Transp. Res. Board Natl. Acad. Washingt., (2014).
[12] J. D’Angelo, E. Harm, J. Bartoszek, G. Baumgardner, M. Corrigan, J. Cowsert, T. Harman, M. Jamshidi, W. Jones, D. Newcomb, B. Prowell, R. Sines, Y. Bruce, Warm-Mix Asphalt : European Practice, (2008).
[13] X. Yang, P.D. Lecturer, Z. You, D. Ph, P. E, M. Rosli, M. Hasan, P.D. Lecturer, A. Diab, P.D. Assistant, Environmental and mechanical performance of crumb rubber modi fi ed warm mix asphalt using Evotherm, J. Clean. Prod., 159 (2017) 346–358.
[14] A. González, J. Norambuena-contreras, L. Storey, E. Schlangen, Effect of RAP and fibers addition on asphalt mixtures with self-healing properties gained by microwave radiation heating, Constr. Build. Mater. 159 (2018) 164–174.
[15] M. Mohajeri, Hot Mix Asphalt Recycling, Practices and Principles, Delft University of Technology, 2015.
[16] M. Fakhri, S.A. Hosseini, Laboratory evaluation of rutting and moisture damage resistance of glass fiber modified warm mix asphalt incorporating high RAP proportion, Constr. Build. Mater. 134 (2017) 626–640.
[17] W. Song, B. Huang, X. Shu, Influence of warm-mix asphalt technology and rejuvenator on performance of asphalt mixtures containing 50% reclaimed asphalt pavement, J. Clean. Prod., 192 (2018) 191–198.
[18] M.A. Franesqui, J. Yepes, C. García-Gonzalez, J. Gallego, Sustainable low-temperature asphalt mixtures with marginal porous volcanic aggregates and crumb rubber modi fi ed bitumen, J. Clean. Prod., 207 (2019) 44–56.
[19] K. Shabannezhad, M. Ameri, Laboratory evaluation of performance properties of warm mix recycled asphalt, Iran University of Science and Technology, 2012. (in Persian)
[20] H. Behbahani, M.J. Ayazi, M.H. Shojaei, Laboratory Evaluation of Moisture Susceptibility and Rutting Potential of Warm Mix Asphalt, J. Transp. Eng., Volume 7 (2016) 405–418. (in Persian)
[21] A. Modares, M. Rahmanzadeh, Comparing the Effects of Coal Waste Filler and Pozzolanic Fillers on the Mechanical Properties of Hot Mix Asphalt, J. Transp. Res., Volume 13 (2016) 86–103. (In Persian)
[22] Technical Data Sheet Kaowax, (2017) www.kaochemicals-eu.com.
[23] M.A. Esfahani, M.N. Jahromi, Optimum parafibre length according to mechanical properties in hot mix asphalt, Road Mater. Pavement Des. (2018).
[24] M.F. Tafti, S.A.H. Aqda, H. Motamedi, The impacts of type and proportion of five different asphalt modifiers on the low-temperature fracture toughness and fracture energy of modified HMA, Des. Civ. Environ. Eng., 47 (2019) 169–185.
[25] ASTM D2172 Standard Test Methods for Quantitative Extraction of Bitumen from Bituminous Paving Mixtures, 2017.
[26] W. Zhao, F. Xiao, S.N. Amirkhanian, B.J. Putman, Characterization of rutting performance of warm additive modified asphalt mixtures, Constr. Build. Mater. 31 (2012) 265–272.
[27] I.M. Asi, Performance evaluation of SUPERPAVE and Marshall asphalt mix designs to suite Jordan climatic and traffic conditions, Constr. Build. Mater. 21 (2007) 1732–1740.
[28] H. Ziari, H. Divandari, M. Hajiloo, A. Amini, Investigating the effect of amorphous carbon powder on the moisture sensitivity, fatigue performance and rutting resistance of rubberized asphalt concrete mixtures, Constr. Build. Mater. 217 (2019) 62–72.
[29] M.W. Witczak, K. Kaloush, T. Pellinen, M. El-Basyouny, H. Von Quintus, NCHRP Reprot 465: Simple Performance Test for Superpave Mix Design, 2002.
[30] H.R. Jahanian, G. Shafabakhsh, H. Divandari, Performance evaluation of Hot Mix Asphalt (HMA) containing bitumen modified with Gilsonite, Constr. Build. Mater. 131 (2017) 156–164.
[31] P.M.O. Owende, A.M. Hartman, S.M. Ward, M.D. Gilchrist, M.J. O’Mahony, minimizing distress on flexible pavements using variable tire pressure, J. Transp. Eng., 127 (2001) 254–262.
[32] A.R. Azarhoosh, F. Moghadas Nejad, Evaluating Fatigue Life of Asphalt Mixtures Using Surface Free Energy Parameters, Amirkabir J. Civ. Eng., 50 (2018). (in Persian)
[33] BSI Standards Publication Bituminous mixtures — Test methods for hot mix asphalt Part 24: Resistance to fatigue, 2014.