توسعه المان فیبری بتن مسلح مبتنی بر میدان تنش محلی و برهم‌کنش بتن و آرماتور

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشگاه فردوسی مشهد، دانشکده مهندسی، گروه عمران, ایران

چکیده

در این پژوهش، مدلی تحلیلی جهت توسعه روش فیبری مبتنی بر تئوری میدان تنش محلی ارائه می‌شود. در این راستا، مبانی فرمول‌بندی مدل فیبری به همراه رویکرد لاگرانژی در کرنش‌های بزرگ ارائه شده و معادلات حاکم بر المان قابی پیشنهادی در فرم تضعیف شده اجزا محدودی بازنویسی می‌گردد. همچنین قید پیوستگی کامل بین فیبرهای بتنی و میلگردها برداشته شده و معادلات حاکم بر المان قابی بتن مسلح برای میلگردهای هر لایه به صورت مجزا توسعه می‌یابد. بازنویسی فرمولی این المان بر مبنای تئوری تیر تیموشنکو به همراه اثرات اندرکنشی محوری، خمشی و برشی در دامنه هر المان بتن مسلح انجام می‌گیرد. قابل ذکر است، در فرآیند پیاده‌سازی روش، برهم‌نهی کنش‌های محوری و خمشی با کنش‌های برشی همراه با وارد شدن مستقیم عبارت‌های مربوطه در ماتریس سختی سویی مقطع المان فیبری در نظر گرفته می‌شود. بر همین اساس، با استفاده از فاکتور اصلاح برشی مبتنی بر تئوری میدان تنش محلی در توابع هرمیتی، حل غیرخطی مستقیم تکراری برای هر گام بارگذاری انجام می‌گیرد. صحت‌سنجی روش تحلیلی ارائه شده با مطالعات آزمایشگاهی موجود بر روی اعضای بتنی مسلح مورد آزمون و ارزیابی قرار گرفته که نتایج حاصل از تحلیل نشان از تقریب نسبتاً مناسب و همگرایی قابل قبول در مسائل را دارد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Proposing an RC Fiber Frame Element Based on Local Stress Field Theory and Bar-Concrete Interaction

نویسندگان [English]

  • Behrooz Yousefi
  • Mohammadreza Esfahani
  • Mohammadreza Tavakkolizadeh
Department of Civil Engineering, Ferdowsi Unversity of Mashhad
چکیده [English]

This research presents an analytical model for developing a fiber frame element based on local stress field theory. The proposed formulation is developed through the Lagrangian kinematics assumption to derive the weak form of the equations in large strain conditions. In this regard, the effect of bond-slip has been considered by removing the perfect bond assumption. The governing equations for each element are developed by the directional stiffness matrix in weak form. The extracted formula is based on Timoshenko's beam theory, with axial, bending, and shear interaction effects in the domain of each element. The components of the stiffness matrix are defined through directional derivatives of the semi-linear form of the equations. Moreover, the suggested approach evolves from cubic Hermitian polynomials and the local stress field theory. The validation of the analytical method is provided by the available experimental tests. The implemented code could cover the overall behavior of reinforced concrete members, as well as, the maximum crack width, slip profile, and crack growth. The results show that such a modeling method is capable of simulating RC members.

کلیدواژه‌ها [English]

  • Fiber frame element
  • Smeared crack approach
  • Timoshenko's theory
  • Bond-slip effect
  • Lagrangian approach
[1] F. Taucer, E. Spacone, F.C. Filippou, A fiber beam-column element for seismic response analysis of reinforced concrete structures, Earthquake Engineering Research Center, College of Engineering, University of California Berkeley, California, 1991.
[2]  E. Spacone, F.C. Filippou, F.F. Taucer, Fibre Beam–Column Model for Non‐Linear Analysis of R/C Frames: Part II. Applications, Earthquake engineering & structural dynamics, 25(7) (1996) 727-742.
[3] M.H. Scott, G.L. Fenves, Plastic hinge integration methods for force-based beam–column elements, Journal of Structural Engineering, 132(2) (2006) 244-252.
[4] T. Mullapudi, A. Ayoub, Analysis of reinforced concrete columns subjected to combined axial, flexure, shear, and torsional loads, Journal of Structural Engineering, 139(4) (2012) 561-573.
[5] M. Sasani, A. Werner, A. Kazemi, Bar fracture modeling in progressive collapse analysis of reinforced concrete structures, Engineering Structures, 33(2) (2011) 401-409.
[6] H.R. Valipour, S.J. Foster, Finite element modelling of reinforced concrete framed structures including catenary action, Computers & structures, 88(9) (2010) 529-538.
[7]E. Brunesi, F. Parisi, Progressive collapse fragility models of European reinforced concrete framed buildings based on pushdown analysis, Engineering Structures, 152 (2017) 579-596.
[8] P. Ceresa, L. Petrini, R. Pinho, R. Sousa, A fibre flexure–shear model for seismic analysis of RC‐framed structures, Earthquake Engineering & Structural Dynamics, 38(5) (2009) 565-586.
[9] Z.-X. Li, Y. Gao, Q. Zhao, A 3D flexure–shear fiber element for modeling the seismic behavior of reinforced concrete columns, Engineering Structures, 117(Supplement C) (2016) 372-383.
[10]  R.S. Stramandinoli, H.L. La Rovere, FE model for nonlinear analysis of reinforced concrete beams considering shear deformation, Engineering structures, 35 (2012) 244-253.
[11] M. Lezgy-Nazargah, An efficient materially nonlinear finite element model for reinforced concrete beams based on layered global-local kinematics, Acta Mechanica, 229(3) (2018) 1429-1449.
[12] A. Belarbi, T.T. Hsu, Constitutive laws of concrete in tension and reinforcing bars stiffened by concrete, Structural Journal, 91(4) (1994) 465-474.
[13] H.-G. Kwak, J.-K. Kim, Implementation of bond-slip effect in analyses of RC frames under cyclic loads using layered section method, Engineering structures, 28(12) (2006) 1715-1727.
[14] S. Limkatanyu, W. Prachasaree, G. Kaewkulchai, E. Spacone, Unification of Mixed Euler-Bernoulli-Von Karman Planar Frame Model and Corotational Approach, Mechanics Based Design of Structures and Machines, 42(4) (2014) 419-441.
[15] S. Limkatanyu, E. Spacone, Reinforced concrete frame element with bond interfaces. I: Displacement-based, force-based, and mixed formulations, Journal of Structural Engineering, 128(3) (2002) 346-355.
[16] G. Monti, E. Spacone, Reinforced concrete fiber beam element with bond-slip, Journal of Structural Engineering, 126(6) (2000) 654-661.
[17] W.-H. Pan, M.-X. Tao, J.-G. Nie, Fiber beam–column element model considering reinforcement anchorage slip in the footing, Bulletin of Earthquake Engineering, 15(3) (2017) 991-1018.
[18]  A. Bazoune, Y. Khulief, N. Stephen, Shape functions of three-dimensional Timoshenko beam element, Journal of Sound and Vibration, 259(2) (2003) 473-480.
[19] S. Puchegger, S. Bauer, D. Loidl, K. Kromp, H. Peterlik, Experimental validation of the shear correction factor, Journal of sound and vibration, 261(1) (2003) 177-184.
[20]  W. Yu, D.H. Hodges, Elasticity solutions versus asymptotic sectional analysis of homogeneous, isotropic, prismatic beams, Journal of Applied Mechanics, 71(1) (2004) 15-23.
[21] J. Hutchinson, Shear coefficients for Timoshenko beam theory, Transactions-American Society Of Mechanical Engineers Journal Of Applied Mechanics, 68(1) (2001) 87-92.
[22] S. Dong, C. Alpdogan, E. Taciroglu, Much ado about shear correction factors in Timoshenko beam theory, International Journal of Solids and Structures, 47(13) (2010) 1651-1665.
[23] K. Chan, K. Lai, N. Stephen, K. Young, A new method to determine the shear coefficient of Timoshenko beam theory, Journal of Sound and Vibration, 330(14) (2011) 3488-3497.
[24] S.P. Timoshenko, X. On the transverse vibrations of bars of uniform cross-section, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 43(253) (1922) 125-131.
[25]  M. Soltani, X. An, K. Maekawa, Localized nonlinearity and size-dependent mechanics of in-plane RC element in shear, Engineering structures, 27(6) (2005) 891-908.
[26] K. Maekawa, H. Okamura, A. Pimanmas, Non-linear mechanics of reinforced concrete, Spon Press, 2003.
[27] B. Bujadham, K. MAEKAWA, The universal model for stress transfer across cracks in concrete, Doboku Gakkai Ronbunshu, 1992(451) (1992) 277-287.
[28] H. Okamura, K. Maekawa, Nonlinear analysis and constitutive models of reinforced concrete, Gihodo-Shuppan Co, Tokyo, 1991.
[29] F.J. Vecchio, M.P. Collins, The modified compression-field theory for reinforced concrete elements subjected to shear, Journal of the American Concrete Institute, 83(2) (1986) 219-231.
[30] H. Shima, L.-L. Chou, H. Okamura, Micro and macro models for bond in reinforced concrete, Journal of the Faculty of Engineering, 39(2) (1987) 133-194.
[31] B. Li, Contact density model for stress transfer across cracks in concrete, Journal of the Faculty of Engineering, the University of Tokyo, (1) (1989) 9-52.
[32] M. Soltani, X. An, K. Maekawa, Computational model for post cracking analysis of RC membrane elements based on local stress–strain characteristics, Engineering structures, 25(8) (2003) 993-1007.
[33] H.M.M. Salem, Enhanced tension stiffening model and application to nonlinear dynamic analysis of reinforced concrete, 1998.
[34] C. Jin, M. Soltani, X. An, Experimental and numerical study of cracking behavior of openings in concrete dams, Computers & structures, 83(8) (2005) 525-535.
[35] R. Eligehausen, E.P. Popov, V.V. Bertero, Local bond stress-slip relationships of deformed bars under generalized excitations, (1982).
[36] Y. Gan, Bond stress and slip modeling in nonlinear finite element analysis of reinforced concrete structures, University of Toronto, (2000).
[37] K. Noghabai, Behavior of tie elements of plain and fibrous concrete and varying cross sections, Structural Journal, 97(2) (2000) 277-284.
[38] J.R. Deluce, Cracking Behaviour of Steel Fibre Reinforced Concrete Containing Conventional Steel Reinforcement, University of Toronto, 2011.
[39] M. Jirásek, Z.P. Bazant, Inelastic analysis of structures, John Wiley & Sons, 2002.
[40] X.-B.D. Pang, T.T. Hsu, Behavior of reinforced concrete membrane elements in shear, Structural Journal, 92(6) (1995) 665-679.
[41] E. Ramm, The Riks/Wempner approach-An extension of the displacement control method in nonlinear analysis, nonlinear computational mechanics, (1982) pp. 63-86.
[42] C.A. Felippa, Nonlinear finite element methods, Department of Aerospace Engineering Sciences and Center for Space Structures and Controls, 2001.
[43] K. Schweizerhof, P. Wriggers, Consistent linearization for path following methods in nonlinear FE analysis, Computer Methods in Applied Mechanics and Engineering, 59(3) (1986) 261-279.
[44] R.I. Gilbert, S. Nejadi, An experimental study of flexural cracking in reinforced concrete members under short term loads, University of New South Wales, School of Civil and Environmental Engineering, 2004.