[1] Trädegård, A., F. Nilsson, and S. Östlund, FEMremeshing technique applied to crack growth problems. Computer Methods in Applied Mechanics and Engineering, 1998. 160(1-2): p. 115-131.
[2] Bouchard, P.-O., F. Bay, and Y. Chastel, Numerical modelling of crack propagation: automatic remeshing and comparison of different criteria. Computer methods in applied mechanics and engineering, 2003. 192(35-36): p. 3887-3908.
[3] Heintz, P., On the numerical modelling of quasi‐static crack growth in linear elastic fracture mechanics. International Journal for Numerical Methods in Engineering, 2006. 65(2): p. 174-189.
[4] Khoei, A., H. Azadi, and H. Moslemi, Modeling of crack propagation via an automatic adaptive mesh refinement based on modified superconvergent patch recovery technique. Engineering Fracture Mechanics, 2008. 75(10): p. 2921-2945.
[5] Liu, W.K., S. Jun, and Y.F. Zhang, Reproducing kernel particle methods. International journal for numerical methods in fluids, 1995. 20(8‐9): p. 1081-1106.
[6] Atluri, S.N. and T. Zhu, A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics. Computational mechanics, 1998. 22(2): p. 117-127.
[7] Belytschko, T., Y.Y. Lu, and L. Gu, Element‐free Galerkin methods. International journal for numerical methods in engineering, 1994. 37(2): p. 229-256.
[8] Arzani, H., A. Kaveh, and M. Dehghan, Adaptive node moving refinement in discrete least squares meshless method using charged system search. Scientia Iranica, 2014. 21(5): p. 1529-1538.
[9] Arzani, H., A. Kaveh, and M. Taheri Taromsari, Optimum two-dimensional crack modeling in discrete least-squares meshless method by charged system search algorithm. Scientia Iranica, 2017. 24(1): p. 143152.
[10] Belytschko, T., Y. Lu, and L. Gu, Crack propagation by element-free Galerkin methods. Engineering Fracture Mechanics, 1995. 51(2): p. 295-315.
[11] Melenk, J.M. and I. Babuška, The partition of unity finite element method: basic theory and applications. Computer methods in applied mechanics and engineering, 1996. 139(1-4): p. 289-314.
[12] Moës, N., J. Dolbow, and T. Belytschko, A finite element method for crack growth without remeshing. International journal for numerical methods in engineering, 1999. 46(1): p. 131-150.
[13] Strouboulis, T., I. Babuška, and K. Copps, The design and analysis of the generalized finite element method. Computer methods in applied mechanics and engineering, 2000. 181(1-3): p. 43-69.
[14] Strouboulis, T., K. Copps, and I. Babuška, The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering, 2000. 47(8): p. 1401-1417.
[15] Shi, G.h. and R.E. Goodman, Generalization of two‐dimensional discontinuous deformation analysis for forward modelling. International Journal for Numerical and Analytical Methods in Geomechanics, 1989. 13(4): p. 359-380.
[16] Ghasemzadeh, H., M. Ramezanpour, and S. Bodaghpour, Dynamic high order numerical manifold method based on weighted residual method. International Journal for Numerical Methods in Engineering, 2014. 100(8): p. 596-619.
[17] Zheng, H. and D. Xu, New strategies for some issues of numerical manifold method in simulation of crack propagation. International Journal for Numerical Methods in Engineering, 2014. 97(13): p. 986-1010.
[18] Terada, K., et al., Finite cover method for progressive failure with cohesive zone fracture in heterogeneous solids and structures. Computational Mechanics, 2007. 39(2): p. 191-210.
[19] Zheng, H., F. Liu, and X. Du, Complementarity problem arising from static growth of multiple cracks and MLS-based numerical manifold method. Computer Methods in Applied Mechanics and Engineering, 2015. 295: p. 150-171.
[20] Kim, J. and K.-J. Bathe, The finite element method enriched by interpolation covers. Computers & Structures, 2013. 116: p. 35-49.
[21] Kim, J. and K.-J. Bathe, Towards a procedure to automatically improve finite element solutions by interpolation covers. Computers & Structures, 2014. 131: p. 81-97.
[22] Wawrzynek, P.A. and A.R. Ingraffea, An interactive approach to local remeshing around a propagating crack. Finite Elements in Analysis and Design, 1989. 5(1): p. 87-96.
[23] Zhang, H., et al., Numerical analysis of 2-D crack propagation problems using the numerical manifold method. Engineering analysis with boundary elements, 2010. 34(1): p. 41-50.
[24] Arzani, H. and E. Khoshbavar Rad, Automatic Adaptive Finite Element Enrichement using Interpolation Cover Functions. Computational Methods in Engineering, 2019. 37(2): p. 79-96.
[25] Belytschko, T. and T. Black, Elastic crack growth in finite elements with minimal remeshing. International journal for numerical methods in engineering, 1999. 45(5): p. 601-620.
[26] Ewalds, H. and E. WANHILL, Fracture Mechanics, Ed. Edward Arnold, 1986. 10.
[27] Karihaloo, B.L., Fracture mechanics & structural concrete. Longman Scientific and Technical, 1995.
[28] Zhang, H. and S. Zhang, Extract of stress intensity factors on honeycomb elements by the numerical manifold method. Finite elements in analysis and design, 2012. 59: p. 55-65.
[29] Mousavi, S., E. Grinspun, and N. Sukumar, Harmonic enrichment functions: A unified treatment of multiple, intersecting and branched cracks in the extended finite element method. International Journal for Numerical Methods in Engineering, 2011. 85(10): p. 1306-1322.