[1] A. Neubrand, Functionally graded materials, (2001).
[2]S. Mojiri, Numerical analysis of cohesive crack growth using extended finite element method (X-FEM), Master of Science Thesis. Institut de Recherche en Génie Civil et Méchanique, France, (2010).
[3] Y. Mohammadi, S. Kaushik, Investigation of mechanical properties of steel fibre reinforced concrete with mixed aspect ratio of fibres, Journal of ferrocement, 33(1) (2003) 1-14.
[4] K.B. Broberg, Cracks and fracture, Elsevier, 1999.
[5] A.A. Griffith, VI. The phenomena of rupture and flow in solids, Philosophical transactions of the royal society of london. Series A, containing papers of a mathematical or physical character, 221(582-593) (1921) 163-198.
[6] D. Motamedi, Nonlinear XFEM modeling of delamination in fiber reinforced composites considering uncertain fracture properties and effect of fiber bridging, University of British Columbia, 2013.
[7] A. Hillerborg, M. Modéer, P.-E. Petersson, Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements, Cement and concrete research, 6(6) (1976) 773-781.
[8] S.A. Ashour, G.S. Hasanain, F.F. Wafa, Shear behavior of high-strength fiber reinforced concrete beams, Structural Journal, 89(2) (1992) 176-184.
[9] S.P. Shah, Do fibers increase the tensile strength of cement-based matrix?, Materials Journal, 88(6) (1992) 595-602.
[10]V.C. Li, M. Maalej, Toughening in cement based composites. Part II: Fiber reinforced cementitious composites, Cement and Concrete Composites, 18(4) (1996) 239-249.
[11]C.-F.M. Code, 90,(1993) Bulletin d’Information N 213/214, Final version printed by Th, Telford, London,(1993, 460.
[12]P.-E. Petersson, Crack growth and development of fracture zones in plain concrete and similar materials, (1981).
[13]K. Gylltoft, Fracture mechanics models for fatigue in concrete structures, Luleå tekniska universitet, 1983.
[14]P. Nanakorn, H. Horii, S. Matsuoka, A fracture mechanics- based design method for SFRC tunnel linings, Doboku Gakkai Ronbunshu, 1996(532) (1996) 221-233.
[15]Y. Kitsutaka, Fracture parameters by polylinear tension- softening analysis, Journal of Engineering Mechanics, 123(5) (1997) 444-450.
[16]H. Stang, Evaluation of properties of cementitious fiber composite materials, in: High performance fiber reinforced cement composites, E & FN Spon London, 1992, pp. 388-406.
[17]H.W. Reinhardt, Fracture mechanics of an elastic softening material like concrete, HERON, 29 (2), 1984,(1984).
[18] H. Cornelissen, D. Hordijk, H. Reinhardt, Experimental determination of crack softening characteristics of normalweight and lightweight, Heron, 31(2) (1986) 45-46.
[19]G.I. Barenblatt, The formation of equilibrium cracks during brittle fracture. General ideas and hypotheses. Axially-symmetric cracks, Journal of Applied Mathematics and Mechanics, 23(3) (1959) 622-636.
[20]G.I. Barenblatt, The mathematical theory of equilibrium cracks in brittle fracture, Advances in applied mechanics, 7(1) (1962) 55-129.
[21]D.S. Dugdale, Yielding of steel sheets containing slits, Journal of the Mechanics and Physics of Solids, 8(2) (1960) 100-104.
[22]S. Quek, V. Lin, M. Maalej, Development of functionally- graded cementitious panel against high-velocity small projectile impact, International Journal of Impact Engineering, 37(8) (2010) 928-941.
[23]J.H. Song, P.M. Areias, T. Belytschko, A method for dynamic crack and shear band propagation with phantom nodes, International Journal for Numerical Methods in Engineering, 67(6) (2006) 868-893.
[24]G. Abaqus, Abaqus 6.11, Dassault Systemes Simulia Corp Providence, RI, USA, (2011).
[25]J. Roesler, G. Paulino, C. Gaedicke, A. Bordelon, K. Park, Fracture behavior of functionally graded concrete materials for rigid pavements, Transportation Research Record, 2037(1) (2007) 40-49.
[26]P.P. Camanho, C.G. Davila, M. De Moura, Numerical simulation of mixed-mode progressive delamination in composite materials, Journal of composite materials, 37(16) (2003) 1415-1438.
[27]K. Park, H. Choi, G.H. Paulino, Assessment of cohesive traction-separation relationships in ABAQUS: A comparative study, Mechanics Research Communications, 78 (2016) 71-78.
[28]A. Needleman, A continuum model for void nucleation by inclusion debonding, (1987).
[29]J.G. Van Mier, Fracture processes of concrete, CRC press, 2017.
[30]K. Park, G.H. Paulino, J.R. Roesler, Determination of the kink point in the bilinear softening model for concrete, Engineering Fracture Mechanics, 75(13) (2008) 3806-3818.
[31]S.P. Shah, S.E. Swartz, C. Ouyang, Fracture mechanics of concrete: applications of fracture mechanics to concrete, rock and other quasi-brittle materials, John Wiley & Sons, 1995.
[32]T.-S. Lok, J.-S. Pei, Flexural behavior of steel fiber reinforced concrete, Journal of materials in civil engineering, 10(2) (1998) 86-97.
[33]S.-Y. Fu, B. Lauke, Effects of fiber length and fiber orientation distributions on the tensile strength of short- fiber-reinforced polymers, Composites Science and Technology, 56(10) (1996) 1179-1190.
[34]V.S. Gopalaratnam, S.P. Shah, Tensile failure of steel fiber-reinforced mortar, Journal of Engineering Mechanics, 113(5) (1987) 635-652.