[1] G. Blight, Slope failures in municipal solid waste dumps and landfills: a review, Waste Management & Research, 26(5) (2008) 448-463.
[2] R.M. Koerner, T.-Y. Soong, Leachate in landfills: the stability issues, Geotextiles and Geomembranes, 18(5) (2000) 293-309.
[3] N. Shariatmadari, M. Karimpour-Fard, M. Keramati, H. Jafari Kalarijani, Mechanical response of MSW materials subjected to shearing in direct shear test apparatus, in: 4th International Conference on Geotechnical Engineering and Soil Mechanics, Tehran, Iran, 2010
[4] M.A. Gabr, M. Hossain, M. Barlaz, Shear strength parameters of municipal solid waste with leachate recirculation, Journal of Geotechnical and Geoenvironmental Engineering, 133(4) (2007) 478- 484.
[5] D. Zekkos, J.D. Bray, G.A. Athanasopoulos, M.F. Riemer, E. Kavazanjian, X. Founta, A. Grizi, Compositional and loading rate effects on the shear strength of municipal solid waste, in: Proceedings of the 4th International Conference on Earthquake Geotechnical Engineering, 2007, pp. 25-28.
[6] E. Kavazanjian, Mechanical properties of municipal solid waste, in: Proceedings sardinia, 2001, pp. 415- 424.
[7] M. Karimpour-Fard, S.L. Machado, N. Shariatmadari, A. Noorzad, A laboratory study on the MSW mechanical behavior in triaxial apparatus, Waste management, 31(8) (2011) 1807-1819.
[8] S.L. Machado, M.F. Carvalho, O.M. Vilar, Constitutive model for municipal solid waste, Journal of Geotechnical and Geoenvironmental Engineering, 128(11) (2002) 940-951.
[9] M. Singh, I. Fleming, Application of a hyperbolic model to municipal solid waste, Geotechnique, 61(7) (2011) 533-547.
[10] M. Asadi, N. Shariatmadari, M. Karimpour-Fard, A. Noorzad, Validation of Hyperbolic Model by the Results of Triaxial and Direct Shear Tests of Municipal Solid Waste, Geotechnical and Geological Engineering, 35(5) (2017) 2003-2015.
[11] J.W. Davidson, D. Savic, G.A. Walters, Method for the identification of explicit polynomial formulae for the friction in turbulent pipe flow, Journal of Hydroinformatics, 1(2) (1999) 115-126.
[12] O. Gistolisi, D. Savic, A. Doglioni, Data reconstruction and forecasting by evolutionary polynomial regression, in: Hydroinformatics: (In 2 Volumes, with CD-ROM), World Scientific, 2004, pp. 1245-1252.
[13] M. Keramati, S.K. Reshad, S. Asgarpour, M.A. Tutunchian, Predicting shear strength of municipal waste material by evolutionary polynomial regression (EPR), Electronic Journal of Geotechnical Engineering, 19 (2014) 53-62.
[14] D. ASTM, 3080-90: Standard test method for direct shear test of soils under consolidated drained conditions, Annual Book of ASTM Standards, 4 (1994) 290-295.
[15] E. Kavazanjian Jr, N. Matasovic, R.C. Bachus, Large-diameter static and cyclic laboratory testing of municipal solid waste, in: Proceedings Sardinia, 1999, pp. 437-444.
[16] D.P. Zeccos, Evaluation of static and dynamic properties of municipal solid-waste, University of California, Berkeley, 2005.
[17] J. Nascimento, Mechanical behavior of municipal solid waste. Ms. C, thesis, University of Sao Paulo, Sao Carlos, SP, Brazil (in Portuguese), 2007.
[18] F. Kölsch, The influence of fibrous constituents on shear strength of municipal solid waste, Ph. D. Thesis, Leichtweiss-Institut, Technische Universität Braunschweig, Brauschweig, Germany (in German), 1996.
[19] R.L. Kondner, Hyperbolic stress-strain response: cohesive soils, J. Geotech. Engrg. Div., 89(1) (1963) 115-143.
[20] J.M. Duncan, C.-Y. Chang, Nonlinear analysis of stress and strain in soils, Journal of Soil Mechanics & Foundations Div, (1970).
[21] M.K. Singh, Characterization of stress-deformation behaviour of municipal solid waste, 2008.