بررسی عوامل موثر بر ظرفیت حمل فلوتاسیون ستونی سولفیدهای مس در مقیاس آزمایشگاهی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 Mining & Metallurgical Eng. Department

2 دانشکده مهندسی معدن و متالورژی، دانشگاه صنعتی امیرکبیر

3 دانشگاه صنعتی امیرکبیر

چکیده

ظرفیت حمل( Ca  ) یکی از پارامترهای لازم در طراحی و بزرگ مقیاس کردن ستون‌های فلوتاسیون است که بر اساس جرم جامد کنسانتره به ازای واحد زمان در واحدی از سطح مقطع ستون تعیین می‌شود. مدل‌های تخمین ظرفیت حمل حباب برای یک فرآیند فلوتاسیون، به طور معمول با استفاده از یک بیان تجربی مبتنی بر اندازه و دانسیته‌ی ذرات کانی قابل شناور با درنظر گرفتن چندین فرض در دامنه‌ی محدودی از داده‌ها حاصل می‌شود. در تعیین ظرفیت حمل بایستی تأثیر متغیرهای عملیاتی نظیر ابعاد ذرات، نرخ جامد پالپ، قطر حباب، نرخ جریان هوا، محتوای جامد پالپ، مقدار کفساز و ارتفاع کف در نظر گرفته شود. در این مطالعه، تأثیر این عوامل بر ظرفیت حمل حباب‌ها در فلوتاسیون ستونی مورد بررسی قرار گرفت. نمونه مورد استفاده در این مطالعه از کنسانتره مدار رافر واحد فلوتاسیون مس سونگون تهیه شد. نتایج نشان داد که با افزایش نرخ جریان  Ca افزایش می‌یابد ولی در در پالپ تا s/cm 1/4 ،با راه‌یابی بیشتر ذرات جامد به ستون سطح بیشتری از حباب‌ها پوشیده شده و نرخ‌های بالاتر ظرفیت حمل کاهش می‌یابد. در سرعت‌های پایین پالپ ورودی، افزایش میزان کف ساز منجر به ظرفیت حمل( cm2.min/g 2/54 )در غلظت کفساز ppm 45 بالاتر شد، ولی در نرخ‌های پالپ بالاتر از s/cm 2/1 ،حداکثر ظرفیت حمل ) Ca افزایش یافت. همچنین نتایج بررسی آزمایش‌ها با به دست آمد. با کاهش ارتفاع کف و افزایش درصد جامد (تا 30 درصد)، ذرات با دانه‌بندی مختلف نشان داد که پالپ ورودی با ابعاد 63-44 میکرون از بالاترین ظرفیت حمل برخوردار است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation of Factors Affecting Carrying Capacity of Laboratory Flotation Column Treating Copper Sulfides

نویسنده [English]

  • mehdi Irannajad 1
چکیده [English]

One of the necessary parameters in designing and scaling up flotation columns is carrying capacity (Ca ) which can be determined in terms of mass of solids per unit time per unit column cross-sectional area. The prediction of Ca for a given flotation technology has been commonly achieved using a simplified expression based on a representative particle size and density of the floatable material, regarding several assumptions in limited data ranges. In determining the Ca , the effect of operational parameters, such as particle size, pulp solids rate, bubble diameter, air flow rate, pulp solid content, frother dosage and froth height should be considered. In this study, the effect of these parameters on the Ca was investigated in column flotation. The studied sample was obtained from rougher circuit concentrate of Sungun copper complex flotation plant. It was found that when the pulp solid rate increased up to 1.4 cm/s, more surface of bubbles is covered by entering more solid particles to the column and Ca increased, but it decreased in higher rates. In lower speed of input pulp, the increase of frother dosage led to higher Ca , but in pulp rate higher than 1.2 cm/s, the maximum Ca was obtained in frother dosage of 45 ppm. By decreasing the froth height and increasing the solid percent up to 30%, Ca increased. Likewise, the results of the experiments with particles of different size distribution showed that the input pulp with size 44-63 μm had the maximum Ca.

کلیدواژه‌ها [English]

  • Copper sulphide ores
  • Carrying capacity
  • Column flotation
  • Operating parameters
  • Sungun
[1]  A. Azizi, A study on the modified flotation parameters and selectivity index in copper flotation. Particulate Science and Technology, 35 (1), (2017): 38-44.
[2]  Y. Liao, J. Liu, Y. Wang, Y. Cao, Simulating a fuzzy level controller for flotation columns. Mining Science and Technology, 21, (2011): 815-818.
[3]  H. A. M. Ahmed, G. M. A. Mahran, Processing of iron ore fines from Alswaween Kingdom of Saudi Arabia. Physicochemical problems of mineral processing, 49 (2), (2013): 419−430.
[4]  M. S. Jena, S. K. Biswal, S. P. Das, and P. S. R. Reddy, Comparative study of the performance of conventional and column flotation when treating coking coal fines. Fuel Processing Technology, 89, (2008): 1409–1415.
[5]  H. Hacifazlioglu, Recovery of coal from cyclone overflow waste coals by using a combination of jameson and column flotation, Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 33, (2011): 2044-2057.
[6]  O. Dalahmetoglu, M. Kemal, Optimisation of enrichment  conditions  of  Zonguldak   hardcoal with column  flotation.;  In:  Kemal,  Arslan,  Akar  & Canbazoglu (eds.) Changing Scopes in Mineral Processing, Balkema, Rotterdam, (1996): 355-360.
[7] T. C. Eisele, S. K. Kawatra, Stabilization of flotation column performance by horizontal baffle columns. Minerals & Metallurgical Processing, 24 (2), (2007): 61-66.
[8]  T. P. Meloy, Analysis and optimization of mineral processing and coal cleaning circuit- circuit analysis. International Journal of Mineral Processing, 10 (1), (1983): 61-80.
[9]  R. Amelunxen, The mechanics of operation of column flotation machines. Proceedings of 17th Annual Meeting of the Canadian Mineral Processors; CIM, Ottawa, (1985), 13–18
[10]  T. F. Al-Fariss, K. A. El-Nagdy, F. A. Abd El- Aleem, A. A. El- Midany, Column versus mechanical flotation for calcareous phosphate fines upgrading. Particulate Science and Technology, 31 (5), (2013): 488-493.
[11]  K. N. Subramanian, D. E. G. Lonnelly, K. Y., Wong, Commercialization of a  column  flotation  circuit  for gold sulphide ore. Society of Mining Engineers, Littleton, Colorado, (1988): 13-18.
[12]  S. Dey, S. Pani, R. Singh, G. M. Paul, Response of process parameters for processing of iron ore slime using column flotation. International Journal of Mineral Processing, 140, (2015): 58–65.
[13]  D. Tao, G. H. Luttrell, R. H. Yoon, A parametric study of froth stability and its effect on column flotation of fine particles. International Journal of Mineral Processing, 59, (2000): 25-43.
[14]  P. S. R. Reddy, S. G. Kumar, K. K. Bhattacharyya, S. R. S. Sastri, K. S. Narasimhan, Flotation column for fine coal beneficiation. International Journal of Mineral Processing, 24, (1988): 161-172.
[15]  J. A. Finch, G. S. Dobby, Column Flotation, Vol. 180. Pergamon Press, Oxford, 1990.
[16]  S. T. Hall, The treatment of industrial minerals by column flotation. Indian Mineral Processing Supply (1990): 30-36.
[17]  A. Uribe-Salas, R. Pérez-Garibay, F. Nava-Alonso, Operating parameters that affect the carrying capacity of column flotation of a zinc sulfide mineral. Mineral Engineering, 20 (7), (2007): 710-715.
[18]  V. Martinez-Gomez, R. Pérez-Garibay, J. Rubio, Factors involving the solids-carrying flotation capacity of microbubbles. Minerals Engineering, 53, (2013): 160–166.
[19]  J. B. Yianatos, F. A. Contreras, On the Carrying capacity limitation in large flotation cells. Canadian Metallurgical Quarterly, 49 (4), (2010): 345-352.
[20]  R. P. King, T. A. Hatton, D. G. Hulbert, Bubble loading during flotation. Transactions of the Institution of Mining and Metallurgy, (1974):112–115.
[21]  P. M. Gallegos-Acevedo, R. Pérez-Garibay, A. Uribe-Salas, Maximum bubble loads: experimental measurements vs. analytical estimation. Minerals Engineering, 19, (2006):12-18.
[22]  R. Espinosa-Gomez, J. A. Finch, J. B. Yianatos, G. S. Dobby, Column carrying capacity: particle size and density effects. Minerals Engineering, 1 (1), (1998): 77-79.
[23]  K. V. S. Sastri, Technical note: Carrying capacity    in flotation columns. Minerals Engineering, 9 (4), (1996): 465-468.
[24]  A. Patwardhan, R Q. Honaker, Development of a carrying-capacity model for column froth flotation. International Journal of Mineral Processing, 59, (2000): 275–293.
[25]  Y. Vazifeh, E. Jorjani, A. Bagherian, Optimization of reagent dosages for copper flotation using statistical technique, Transactions of Nonferrous  Metals Society of China, 20, (2010): 2371-2378.
[26]  U. P. Veera, K. L. Kataria, J. B. Joshi, Effect of superficial gas velocity on gas holdup profiles in foaming liquids in bubble column reactors. Chemical engineering journal, 99, (2004): 53–58.
[27]  J. A. Finch, J. Xiao, C. Hardie, C. O. Gomez, Gas Dispersion Properties: Bubble Surface Area Flux and Gas Holdup, Minerals Engineering, 13 (4), (2000): 365-372.
[28]  R. Pérez-Garibay, E. Martínez-Ramos, J. Rubio, Gas dispersion measurements in microbubble flotation systems. Minerals Engineering, 26 (15), (2012): 34–40.
[29]  R. Pérez Garibay, A. P. M. Gallegos, S. A. Uribe, F. Nava, Effect of collection zone height and operating variables on recovery of overload flotation columns. Minerals Engineering, 15, (2002): 325-331
[30]  H. Kursun, Determination of carrying capacity using talc in column flotation. Arabian Journal for Science and Engineering, 36, (2011): 703-711
[31]  R. M. Rahman, S. Ata, G. J. Jameson, The effect of flotation variables on the recovery of different particle size fractions in the froth and the pulp. International Journal of Mineral Processing, 106-109, (2012): 70–77