[1] A. Azizi, A study on the modified flotation parameters and selectivity index in copper flotation. Particulate Science and Technology, 35 (1), (2017): 38-44.
[2] Y. Liao, J. Liu, Y. Wang, Y. Cao, Simulating a fuzzy level controller for flotation columns. Mining Science and Technology, 21, (2011): 815-818.
[3] H. A. M. Ahmed, G. M. A. Mahran, Processing of iron ore fines from Alswaween Kingdom of Saudi Arabia. Physicochemical problems of mineral processing, 49 (2), (2013): 419−430.
[4] M. S. Jena, S. K. Biswal, S. P. Das, and P. S. R. Reddy, Comparative study of the performance of conventional and column flotation when treating coking coal fines. Fuel Processing Technology, 89, (2008): 1409–1415.
[5] H. Hacifazlioglu, Recovery of coal from cyclone overflow waste coals by using a combination of jameson and column flotation, Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 33, (2011): 2044-2057.
[6] O. Dalahmetoglu, M. Kemal, Optimisation of enrichment conditions of Zonguldak hardcoal with column flotation.; In: Kemal, Arslan, Akar & Canbazoglu (eds.) Changing Scopes in Mineral Processing, Balkema, Rotterdam, (1996): 355-360.
[7] T. C. Eisele, S. K. Kawatra, Stabilization of flotation column performance by horizontal baffle columns. Minerals & Metallurgical Processing, 24 (2), (2007): 61-66.
[8] T. P. Meloy, Analysis and optimization of mineral processing and coal cleaning circuit- circuit analysis. International Journal of Mineral Processing, 10 (1), (1983): 61-80.
[9] R. Amelunxen, The mechanics of operation of column flotation machines. Proceedings of 17th Annual Meeting of the Canadian Mineral Processors; CIM, Ottawa, (1985), 13–18
[10] T. F. Al-Fariss, K. A. El-Nagdy, F. A. Abd El- Aleem, A. A. El- Midany, Column versus mechanical flotation for calcareous phosphate fines upgrading. Particulate Science and Technology, 31 (5), (2013): 488-493.
[11] K. N. Subramanian, D. E. G. Lonnelly, K. Y., Wong, Commercialization of a column flotation circuit for gold sulphide ore. Society of Mining Engineers, Littleton, Colorado, (1988): 13-18.
[12] S. Dey, S. Pani, R. Singh, G. M. Paul, Response of process parameters for processing of iron ore slime using column flotation. International Journal of Mineral Processing, 140, (2015): 58–65.
[13] D. Tao, G. H. Luttrell, R. H. Yoon, A parametric study of froth stability and its effect on column flotation of fine particles. International Journal of Mineral Processing, 59, (2000): 25-43.
[14] P. S. R. Reddy, S. G. Kumar, K. K. Bhattacharyya, S. R. S. Sastri, K. S. Narasimhan, Flotation column for fine coal beneficiation. International Journal of Mineral Processing, 24, (1988): 161-172.
[15] J. A. Finch, G. S. Dobby, Column Flotation, Vol. 180. Pergamon Press, Oxford, 1990.
[16] S. T. Hall, The treatment of industrial minerals by column flotation. Indian Mineral Processing Supply (1990): 30-36.
[17] A. Uribe-Salas, R. Pérez-Garibay, F. Nava-Alonso, Operating parameters that affect the carrying capacity of column flotation of a zinc sulfide mineral. Mineral Engineering, 20 (7), (2007): 710-715.
[18] V. Martinez-Gomez, R. Pérez-Garibay, J. Rubio, Factors involving the solids-carrying flotation capacity of microbubbles. Minerals Engineering, 53, (2013): 160–166.
[19] J. B. Yianatos, F. A. Contreras, On the Carrying capacity limitation in large flotation cells. Canadian Metallurgical Quarterly, 49 (4), (2010): 345-352.
[20] R. P. King, T. A. Hatton, D. G. Hulbert, Bubble loading during flotation. Transactions of the Institution of Mining and Metallurgy, (1974):112–115.
[21] P. M. Gallegos-Acevedo, R. Pérez-Garibay, A. Uribe-Salas, Maximum bubble loads: experimental measurements vs. analytical estimation. Minerals Engineering, 19, (2006):12-18.
[22] R. Espinosa-Gomez, J. A. Finch, J. B. Yianatos, G. S. Dobby, Column carrying capacity: particle size and density effects. Minerals Engineering, 1 (1), (1998): 77-79.
[23] K. V. S. Sastri, Technical note: Carrying capacity in flotation columns. Minerals Engineering, 9 (4), (1996): 465-468.
[24] A. Patwardhan, R Q. Honaker, Development of a carrying-capacity model for column froth flotation. International Journal of Mineral Processing, 59, (2000): 275–293.
[25] Y. Vazifeh, E. Jorjani, A. Bagherian, Optimization of reagent dosages for copper flotation using statistical technique, Transactions of Nonferrous Metals Society of China, 20, (2010): 2371-2378.
[26] U. P. Veera, K. L. Kataria, J. B. Joshi, Effect of superficial gas velocity on gas holdup profiles in foaming liquids in bubble column reactors. Chemical engineering journal, 99, (2004): 53–58.
[27] J. A. Finch, J. Xiao, C. Hardie, C. O. Gomez, Gas Dispersion Properties: Bubble Surface Area Flux and Gas Holdup, Minerals Engineering, 13 (4), (2000): 365-372.
[28] R. Pérez-Garibay, E. Martínez-Ramos, J. Rubio, Gas dispersion measurements in microbubble flotation systems. Minerals Engineering, 26 (15), (2012): 34–40.
[29] R. Pérez Garibay, A. P. M. Gallegos, S. A. Uribe, F. Nava, Effect of collection zone height and operating variables on recovery of overload flotation columns. Minerals Engineering, 15, (2002): 325-331
[30] H. Kursun, Determination of carrying capacity using talc in column flotation. Arabian Journal for Science and Engineering, 36, (2011): 703-711
[31] R. M. Rahman, S. Ata, G. J. Jameson, The effect of flotation variables on the recovery of different particle size fractions in the froth and the pulp. International Journal of Mineral Processing, 106-109, (2012): 70–77