تحلیل پایداری و ارتعاشی آزاد ستون‌های غیرمنشوری با استفاده از ترکیب روش سری‌های توانی و گالرکین

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی عمران، دانشکده مهندسی، دانشگاه کاشان، کاشان، ایران

2 دانشکده مهندسی عمران، دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران، ایران

چکیده

امروزه استفاده از اعضای محوری و خمشی با مقطع متغیر در قابها به علت افزایش پایداری و کاهش وزن سازه، افزایش یافته است. به همین دلیل در این مقاله، رفتار ستون‌های غیرمنشوری تحت تحلیل پایداری و ارتعاش آزاد مورد مطالعه قرار می‌گیرد. در مرحله نخست، معادله تعادل حاکم بر تیر اویلر-برنولی با مقطع متغیر که به صورت یک معادله دیفرانسیل مرتبه چهار باضرایب متغیر است، با اعمال اصل حداقل پتانسیل انرژی به تابع انرژی استخراج می‌گردد. در این پژوهش، به منظور حل دقیق معادله پایداری از روش بسط سری‌های توانی استفاده شده است. بر اساس اصول حاکم بر روش عددی مذکور فرم تقریبی تغییر شکل حاکم بر مد اول کمانش ستون به صورت یک چند جمله‌ای متناهی به دست می‌آید و با جایگذاری شرایط مرزی حاکم بر عضو ارتجاعی و با استفاده از روش حل مقادیر ویژه مقدار بار کمانش بحرانی محاسبه می‌گردد. در پایان، با توجه به تشابه فرم تغییر شکل اعضای الاستیک تحت تحلیل ارتعاش آزاد و پایداری از روش تقریبی گالرکین جهت استخراج فرکانس طبیعی ارتعاش سیستم استفاده شده است. به منظور نشان دادن توانایی و صحت روش ترکیبی استفاده شده در این مطالعه، چندین مثال عددی شامل ستون‌های غیرمنشوری با شرایط مرزی متفاوت، ارائه می‌گردد. نتایج به دست آمده با مقادیر حاصل از پژوهش‌های انجام شده توسط دیگر محققین در این زمینه و تحلیل عددی حاصل از نرم افزار اجزای محدود انسیس، مقایسه شده‌اند. نتایج نشان دهنده تطابق مطلوب بین روش حاضر و دیگر روش‌های عددی و یا تحلیلی موجود است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Stability and Free Vibration Analyses of Non-prismatic Columns using the Combination of Power Series Expansions and Galerkin’s Method

نویسندگان [English]

  • M. Soltani 1
  • B. Asgarian 2
1 Department of civil engineering, University of Kashan, Isfahan, Iran
2 Faculty of Civil Engineering, K.N. Toosi University of Technology, Tehran, Iran
چکیده [English]

As a first endeavor, a mixed power series expansions and Galerkin’s method in the context of linear buckling and free vibration analyses of non-uniform beams is presented. For this aim, the governing equilibrium and motion equations are first obtained from the stationary condition of the total potential energy. The power series approximation is then applied to solve the fourth order differential equilibrium equation, since in the presence of variable cross-section, geometrical properties are variable. Regarding aforementioned method, the expression of deflected shape of the buckled member is identified. Afterwards, the critical buckling loads can be acquired by imposing the boundary conditions and solving the eigenvalue problem. Note that the buckling mode shapes of an elastic member are similar to the vibrational ones. Therefore, the obtained deformation shape of the considered non-prismatic columns under linear stability analysis can be used as vibrational shape of member. The natural frequencies of beams with varying cross-section can be estimated by adopting Galerkin’s method based on the energy principle. In order to illustrate the correctness and performance of this method, one comprehensive example of non-uniform beams with various end conditions is presented.

کلیدواژه‌ها [English]

  • Critical Buckling Load
  • Natural Frequency
  • Non-prismatic Column
  • Power Series Method
  • Galerkin's Method
[1] S.P. Timoshenko, J.M Gere, Theory of elastic stability. 2nd ed. New York: McGraw-Hill, 1961.
[2] W.F. Chen, E.M. Lui, Structural stability, theory and implementation, Elsevier, 1987.
[3] Z.P. Bazant, L. Cedolin L, Stability of structures Elastic, inelastic fracture and damage theories, Dover Publications, 1991.
[4] R. Frisch-Fay, On the stability of a strut under uniformly distributed axial forces, International Journal of Solids and Structures, 2(3) (1962) 361–369.
[5] D.L. Karabalis, D.E. Beskos, Static, dynamic and stability of structures composed of tapered beams, Computers and Structures, 16(6) (1983) 731-748.
[6] M.S. Lake, M.M. Mikulas, Buckling and vibration analysis of a simply supported column with apiece wise constant cross section, National Aeronautic and Space Administration NASA, 1991.
[7] F. Arbabi, F. Li, Buckling of variable cross-section columns: integral equation approach, Journal of Structural Engineering, 117(8) (1991) 2426–2441.
[8] A. Siginer, Buckling of columns of variable flexural rigidity, Journal of Engineering Mechanics, 118(3) (1992) 543–640.
[9] J. Ermopulos, Equivalent buckling length of non-uniform members, Journal of Constructional Steel Research, 442 (1977) 141–158.
[10] J. Ermopoulos, Buckling length of non-uniform members under stepped axial loads, Computers and Structures, 73 (1999) 573-582.
[11] I. Raftoyiannis, J. Ermopoulos, Stability of tapered and stepped steel columns with initial imperfections, Engineering Structures, 27 (2005) 1248–1257.
[12] Z.C. Girgin, K. Girgin, A numerical method for static or dynamic stiffness matrix of non-uniform members resting on variable elastic Foundations, Engineering Structures, 27 (2005) 1373–1384.
[13] I.E. Avramidis, K. Mofidis, Bending of beams on three- parameter elastic foundation, International Journal of Solids and Structures, 43 (2006) 357-375.
[14] H. Saffari, R. Rahgozar, R. Jahanshahi, An efficient method for computation of effective length factor of columns in a steel gabled frame with tapered members, Journal of Constructional Steel Research, 64 (2008) 400–406.
[15] A.R. Rahai, S. Kazemi, Buckling analysis of non-prismatic column based on modified vibration method, Communications in Nonlinear Science and Numerical Simulation, 13 (2008) 1721–1735.
[16] M.T. Atay, S.B. Coşkun, Elastic stability of Euler columns with a continuous elastic restraint using variational iteration method, Computers and Mathematics with Applications, 58(11–12) (2009) 2528–2534.
[17] S.B. Coşkun, M.T. Atay, Determination of critical buckling load for elastic columns of constant and variable cross-sections using variational iteration method, Computers and Mathematic with Applications, 58(11–12) (2009) 2260–2266.
[18] F. Okay, M.T. Atay, S.B. Coçkun, Determination of buckling loads and mode shapes of a heavy vertical column under its own weight using the variational iteration method, International Journal of Nonlinear Sciences and Numerical Simulation, 11(10) (2010) 851–857.
[19] R. Attarnejad, Basic displacement functions in analysis of non-prismatic beams, Engineering with Computers, 27(6) (2010) 733-745.
[20] A. Shahba, R. Attarnejad, M. Tavanaie Marvi, S. Hajilar, Free vibration and stability analysis of axially functionally graded tapered Timoshenko beams with classical and non-classical boundary conditions, Composite Part. B, 42 (2011) 801–808.
[21] A. Shahba, S. Rajasekaran, Free vibration and stability of tapered Euler–Bernoulli beams made of axially functionally graded materials, Applied Mathematical Modelling, 36(7) (2012) 3094-3111.
[22] A. Shahba, R. Attarnejad, S. Hajilar, A mechanical-based solution for axially functionally graded tapered Euler-Bernoulli beams, Mechanics of Advanced Materials and Structures, 20 (2013) 696-707.
[23] M. Eisenberger, J. Clastornik, Beams on variable two-parameter elastic foundation, Journal of Engineering Mechanics, 113(10) (1987) 1454-1466.
[24] H. Matsunaga, Vibration and buckling of deep beam–columns on two parameter elastic foundations, Journal of Sound and Vibration, 228(2) (1999) 359–76.
[25] M. Eisenberger, Vibration frequencies for beams on variable one-and two- parameters elastic foundation, Journal of Sound and Vibration, 176(5) (1994) 577–584.
[26] S.Z. Al-Sadder, Exact expression for stability functions of a general non- prismatic beam-column member, Journal of Constructional Steel Research, 60 (2004)1561–1584.
[27] N-II Kim, C.C. Fu, M.Y. Kim, Stiffness matrices for flexural–torsional/lateral buckling and vibration analysis of thin-walled beam, Journal of Sound and Vibration, 299 (2007) 739–756.
[28] B. Asgarian, M. Soltani, F. Mohri, Lateral-torsional buckling of tapered thin-walled beams with arbitrary cross-sections, Thin-Walled Structures, 62 (2013) 96–108.
[29] M. Soltani, B. Asgarian, F. Mohri, Finite element method for stability and free vibration analyses of non-prismatic thin-walled beams, Thin-Walled Structures, 82 (2014) 245-261.
[30] C.M. Wang, C.Y. Wang, J.N. Reddy,Exact Solutions for Buckling of Structural Members, CRC Press LLC, Florida, 2005.
[31] MATLAB Version7.6, MathWorks Inc, USA, 2008.
[32] ANSYS, Version 5.4, Swanson Analysis System, Inc, 2007.