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ABSTRACT: As a first endeavor, a mixed power series expansions and Galerkin’s method in the context 
of linear buckling and free vibration analyses of non-uniform beams is presented. For this aim, the 
governing equilibrium and motion equations are first obtained from the stationary condition of the total 
potential energy. The power series approximation is then applied to solve the fourth order differential 
equilibrium equation, since in the presence of variable cross-section, geometrical properties are variable. 
Regarding aforementioned method, the expression of deflected shape of the buckled member is identified. 
Afterwards, the critical buckling loads can be acquired by imposing the boundary conditions and solving 
the eigenvalue problem. Note that the buckling mode shapes of an elastic member are similar to the 
vibrational ones. Therefore, the obtained deformation shape of the considered non-prismatic columns 
under linear stability analysis can be used as vibrational shape of member. The natural frequencies of 
beams with varying cross-section can be estimated by adopting Galerkin’s method based on the energy 
principle. In order to illustrate the correctness and performance of this method, one comprehensive 
example of non-uniform beams with various end conditions is presented. 
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1- Introduction
   Due to improvements in fabrication process, flexural 
members with variable cross-section, known as non-prismatic 
beam, are extensively spread in different engineering 
structures such as high-rise buildings, aeronautical structures, 
cranes and other application fields. Researchers use various 
methods especially numerical ones to solve the equilibrium 
and motion equations of non-prismatic elements because 
of its relevance civil and mechanical engineering. The 
first investigation in this field was presented by Euler. He 
studied the critical buckling load of columns under their own 
weight. Timoshenko [1] derived the governing equilibrium 
equations and their closed-form solutions for various types of 
flexural members under different circumstances. Arbabi and 
Li [2] presented a semi analytical approach for measuring 
buckling load of columns with step-varying profiles. Rahai 
and Kazemi [3] formulated a new approach for the problem 
of buckling of tapered column members. The exact buckling 
load is calculated by combination of modified vibrational 
mode shape (MVM) and energy method. Coşkun and Atay 
[4] used variational iteration method to determine the critical 
buckling load of elastic columns with variable cross sections. 

Okay et al. [5] found buckling loads and mode shapes of a 
heavy column by applying the variational iteration method. 
The abovementioned researchers investigated the problem 
of buckling and natural frequency only for special types 
of columns. The main purpose of this paper is calculating 
the critical buckling loads and natural frequencies for any 
types of members with linear or polynomial variation of 
cross-sectional profile based on the power series expansions 
combined with Galerkin’s method. The followings are the 
abstract gist of this paper:
1.  In order to ease the solution of the governing equilibrium 

differential equation of non-prismatic member with 
variable coefficients, the power series expansions are 
applied. Regarding this, it can be noticed that the function 
describing the moment inertia of the beam is expanded 
into power series form. The critical buckling loads of 
the member were derived by imposing the boundary 
conditions and solving the eigenvalue problem. The 
explicit expression of buckled shape function is thus 
acquired based on this rigorous numerical method.

2. Based on the similarities between vibration and buckling 
deformation shapes of elastic members, besides; 
adopting Galerkin’s method based on the principle of 
stationary total potential energy along the beam axis, the 
natural frequency of considered non-uniform beam is 
also evaluated.
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   Finally, for measuring the accuracy and validity of the 
proposed procedure, one comprehensive numerical example 
is represented. The outcomes are also compared with other 
accessible results. This method has many positive points 
consisting of efficiency, accuracy and simplicity contrasted 
with more complex numerical methods. 

2- Formulation
   A non-prismatic beam of length L as depicted in Figure 1 is   
taken into account. Following Euler-Bernoulli beam theory, 
the equilibrium equation for non-prismatic member subjected 
to a constant axial load can be expressed as: 
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    In the last formulation, Iy is the minor-axis moment of 
inertia which can be arbitrary over the beam’s length (x-axis). 
The displacement components (w) represents vertical 
deformation (in z direction). E denotes Young’s modulus of 
elasticity for a homogeneous and isotropic material.

Figure 1. (a) A non-prismatic beam (Coordinate system and 
notation of displacement parameters), (b) Boundary conditions 

of a beam element in global and local coordinate system

     In order to make the solution of the stability equation easy, 
a non-dimensional variable (ε= x/L ) is introduced. Regarding 
the power series method, all the variable terms in Equation 1, 
namely, moment of inertia and the displacement parameter, 
should be presented in power series form, as follows:
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    By substituting Equation 2 into Equation 1 and after some 
required algebra, the following recurrence formula about aj+4  
is obtained:

{ 2
4 2*

0

2
*

4
1

1 ( 1)( 2)
( 4)( 3)( 2)( 1)

     ( 4)( 3)( 2)( 1)

    0 1 2

j j

j

i j i
i

a PL j j a
EI j j j j

E I j i j i j j a

        for j , , ,........

+ +

+

− +
=

−
= + +

+ + + +


+ − + − + + + 


=

∑ (4)

  According to the acquired recurrence formula and from 
mathematical point of view, it is culminated that all the ai 
coefficients except for the first four (a0, a1, a2, a3) can be 
obtained. The general solution of Equation 1 can be thus 
expressed in the following form:

(5)

   All terms of the fundamental solutions of the equilibrium 
equation (wi(ε), i=0, 1, 2, 3 ) are derived with the aid of the 
symbolic software MATLAB [6]. According to Figure 1b, the 
boundary conditions at the left end of the beam (ε=0) can be 
written as:

1) At (6)10 0 (0)x wε δ= → = ⇒ =

   and
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  Referring to Figure 1b and using local coordinates, the 
following boundary conditions at the right end (ε=1) of the 
given elastic member exist:

3) At (8)21 ( ) (1)x L w L wε δ= → = ⇒ = =

   and
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    According to the abovementioned end conditions, a general 
system of four linear equations with four unknowns (a0, a1, a2, 
a3) is derived. The function defining the deformation shape 
of the non-prismatic beam under linear stability analysis is 
finally obtained at any places of member as:
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   In which

(11)

    By pondering on the last formulation, the roughly function of 
buckling mode shape can be determined in terms of boundary 
conditions of a beam element. In this regard, let us consider 
fixed-hinged member in which the transverse displacement at 
both ends and rotation at the fixed end (x=ε=0) are prevented. 
The explicit expression of buckled shape for fixed-hinged 
members is thus determined as:

(12)
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   It is culminated that the approximate expression for vertical 
displacement in the non-dimensional coordinate can be 
finally derived in terms of rotation of right end of member 
(θ2), which can be written as:

   To carry out free transverse frequencies using Galerkin’s 
method which is directly applied to the differential equation, 
an appropriate deformation shape of the element after flexural 
buckling satisfying the geometric and natural boundary 
conditions of the system is required. Based on the similarities 
between vibration and buckled deformation shapes of elastic 
members, the obtained buckling mode (Equation 12) can 
be thus adopted as deformed shape of column for the free 
vibration analysis. The bending free vibration can be thus 
calculated by the following expression:

(13)
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3- Numerical Example:
   In this example, the free vibration and stability analyses 
of three non-prismatic columns, as shown in Figure 2, with 
different boundary conditions are investigated. Each column 
has a rectangular cross-section. In all considered cases, the 
geometrical properties of the fixed end section of the member 
are constant. The depth of the column is made to reduce to 
half at the top of the member with a parabolic variation, 
while its width remains constant. The aim of this example is 
also to define the required number of terms in power series 
expansions to obtain an acceptable accuracy on critical 
buckling loads and natural frequencies of non-prismatic 
members. The distribution of moment of inertia I(ε) and 
cross-sectional area A(ε)  of the considered section in non-
dimensional coordinate are described as follows:
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Figure 2. Non-prismatic columns with different boundary 
conditions. (a) Clamped-Free (C-F); (b) Pinned-Pinned (P-P); 

(c) Clamped-Pinned (C-P)

   Effect of the number of power series terms (N) considered 
in the proposed numerical technique on convergence is also 
displayed in Table 1. The dimensionless buckling parameter 
is acquired as:

(16)
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Table 1. Buckling load parameter (λcr ) of power series method 
and finite element results for non-prismatic beams with 

different boundary conditions

Boundary 
Conditions

Number of terms of power series (N) Ansys 
[7]

10 20 30 40 50
C-F 0.404 0.459 0.463 0.463 0.463 0.463
P-P 1.713 1.688 1.688 1.688 1.688 1.686
C-P 3.279 3.349 3.349 3.349 3.349 3.348

   According to Table 1, it can be concluded that for high 
accurate solution involved in the stability analysis, it is not 
required to take more than 30 terms of power series by using 
proposed method. Table 2 gives the lowest values of natural 
frequency of non-prismatic beams with different boundary 
conditions, as illustrated in Figure 2.

Table 2. Natural frequencies comparison of power series 
method and finite element results for non-prismatic beams with 

different boundary conditions

Boundary Conditions Present Method Ansys [7]
C-F 63.47 63.48
P-P 146.77 146.81
C-P 234.83 234.92

    One can observe from Table 2 that 30 terms in the power 
series expansion is a good compromise for equivalent 
accuracy of the both buckling loads and natural frequencies. 
The competency and efficiency of the proposed numerical 
method is also remarked

4- Conclusions 
    In this paper, the power series method is simultaneously 
adopted with Galerkin’s approach and applied to non-
prismatic beams having generalized end conditions. The 
power series approximation is used to solve the equilibrium 
equation of beam with non-uniform cross-section. Regarding 
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this numerical method, displacement component and cross-
section properties are expanded in terms of power series 
of a known degree. By solving the eigenvalue problem, 
one can acquire the critical buckling loads. According to 
aforementioned method, the expression of buckling mode is 
also determined. Based on the similarities existed between 
the vibrational and buckling deformation shapes, the natural 
frequencies of considered member can be evaluated by 
applying the buckling mode in the motion equation instead 
of vibrational one. 
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