تعیین بار کمانش جانبی-پیچشی تیرهای جدار نازک الاستیک دو سر مفصل با مقطع نامتقارن با استفاده از روش اختلاف محدود

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی عمران، دانشگاه کاشان، کاشان، ایران

2 دانشکده مهندسی عمران دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران، ایران

چکیده

تیرهای جدار نازک المان بسیار مهمی در سازه‌های فولادی هستند. در این اعضا، با توجه به نحوه بارگذاری جانبی و همچنین بر اساس تقارن و یا عدم تقارن سطح مقطع عضو، امکان وقوع کمانش جانبی-پیچشی وجود دارد. لذا در این پژوهش به بررسی پایداری تیرهای جدار نازک با نیم‌رخ نامتقارن در برابر کمانش جانبی-پیچشی پرداخته شده است. بدین منظور، در اولین گام در تحلیل پایداری جانبی تیرها، با استفاده از روابط حاکم بر تغییر شکل اعضای جدار نازک و اصل پایستگی انرژی پتانسیل، معادلات دیفرانسیل تعادل تیر با سطح مقطع نامتقارن تحت بارگذاری جانبی تعیین می‌گردد. معادلات پایداری جانبی بدست آمده در حضور پارامترهای لنگر خمشی، نامتقارنی سطح مقطع و زاویه پیچش، یک دستگاه معادلات دیفرانسیل وابسته است. سپس با استفاده از شرایط مرزی حاکم بر خمش، معادله تعادل پیچش مستقل گشته و معادله دیفرانسیل مرتبه چهار با ضرایب متغیر حاصل شده تنها وابسته به پارامتر تغییر شکل پیچشی عضو جدار نازک خواهد بود. در ادامه، با استفاده از روش عددی تقریبی اختلاف محدود مرکزی و فرضیات حاکم بر این روش معادله دیفرانسیل مرتبه چهار بدست آمده حل می‌گردد و در نهایت، با توجه به شرایط مرزی حاکم بر تیرهای دو سر مفصل و با استفاده از روش حل مقادیر ویژه مقدار بار بحرانی کمانش محاسبه می‌شود. نتایج بدست آمده از روش معرفی شده با مقادیر ارائه شده توسط محققان دیگر و مقادیر حاصله از نرم افزار Ansys مقایسه گشته‌اند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Determination of Lateral-Torsional Buckling Load of Simply Supported Prismatic Thin-Walled Beams with Mono-Symmetric Cross-Sections Using the Finite Difference Method

نویسندگان [English]

  • M. Soltani 1
  • B. Asgarian 2
1 Department of Civil Engineering, University of Kashan, Isfahan, Iran
2 Earthquake Engineering Department, Faculty of Civil Engineering, K.N. Toosi University of Technology, Tehran, Iran
چکیده [English]

In this paper, the lateral-torsional stability of simply supported thin-walled beams with mono-symmetric section subjected to bending loads has been studied by means of a numerical method based on the finite difference method (FDM). To fulfill this purpose, the equilibrium equations for elastic thin-walled members with linear behavior are derived from the stationary condition of the total potential energy. In the applied energy method, effects of initial stresses and load eccentricities from shear center of cross-sections are also considered. Finite difference method is one of the most powerful numerical techniques for solving differential equations especially with variable coefficients. Between various computational methods to solve the equilibrium equation, finite difference method requires a minimum of computing stages and is therefore very suitable approach for engineering analysis where the exact solution is very difficult to obtain. The main idea of this method is to replace all the derivatives presented in the governing equilibrium equation and boundary condition equations with the corresponding central finite difference expressions. Finally, the critical buckling loads are then derived by solving the eigenvalue problem. In order to present the accuracy of the proposed method, several numerical examples including lateral-torsional behavior of prismatic beams with mono-symmetric sections are considered. In order to illustrate the correctness and performance of FDM, the evaluated results are compared to the finite element simulations and other available methods.

کلیدواژه‌ها [English]

  • Thin-Walled Beams
  • Lateral-Torsional Buckling
  • Mono-Symmetric Sections
  • Simply Supported
  • Finite Difference Method
[1] S.P. Timoshenko, J.M Gere, Theory of elastic stability. 2nd ed. New York: McGraw-Hill, 1961.
[2] V.Z. Vlasov, Thin-walled elastic beams, Moscow, 1959. French translation, Pièces longues en voiles minces, Eyrolles, Paris, 1962.
[3] W.F. Chen, E.M. Lui, Structural stability, theory and implementation, Elsevier, 1987.
[4] Z.P. Bazant, L. Cedolin L, Stability of structures Elastic, inelastic fracture and damage theories, Dover Publications, 1991.
[5] L. Zhang, G.S. Tong, Flexural–torsional buckling of thin-walled beam members based on shell buckling theory, Thin-Walled Structures, 42 (2004) 1665-1687.
[6] A. Sapkas, L.P. Kollar, Lateral-torsional buckling of composite beams, International Journal of Solids and Structures, 39(11) (2002) 2939-2963.
[7] F. Mohri, A. Brouki, J.C. Roth, Theoretical and numerical stability analyses of unrestrained, mono-symmetric thin-walled beams, Journal of Constructional Steel Research, 59 (2003) 63-90.
[8] L. Jun, L. Wanyou, S. Rongying, H. Hongxing, Coupled bending and torsional vibration of non-symmetrical axially loaded thin-walled Bernoulli–Euler beam, Mechanics Research Communications, 31 (2004) 697–711.
[9] A. Andrade, D. Camotim, P. Providencia, On the evaluation of elastic critical moments in doubly and singly symmetric I-section cantilevers, Journal of Constructional Steel Research, 67 (2007) 894-908.
[10] R.E. Erkmen, M. Mohareb, Buckling analysis of thin-walled open members- A complementary energy variational principle, Thin-Walled Structures, 46 (2008) 602–617.
[11] R.E. Erkmen, M. Mohareb, Buckling analysis of thin-walled open members- A finite element formulation, Thin-Walled Structures, 46 (2008) 618–636.
[12] A.Y.T. Leung, Exact dynamic stiffness for axial-torsional buckling of structural frames, Thin-Walled Structures, 46 (2008) 1–10.
[13] C.W. Kurniawan, M. Mahendran, Elastic lateral buckling of simply supported LiteSteel beams subject to transverse loading, Thin-Walled Structures, 47 (2009) 109-119.
[14] M.M. Attard, M.Y. Kim, Lateral buckling of beams with shear deformations– A hyperelastic formulation, International Journal of Solids and Structures, 47 (2010) 2825-2840.
[15] L. Wu, M. Mohareb M, Buckling of shear deformable thin-walled members—I. Variational principle and analytical solutions, Thin-Walled Structures, 49 (2011) 197–207.
[16] L. Wu, Mohareb M, Buckling formulation for shear deformable thin-walled members—II Finite element formulation, Thin-Walled Structures, 49 (2011) 208–222.
[17] F. Borbon, A. Mirasso, D. Ambrosini, Beam element for coupled torsional-flexural vibration of doubly unsymmetrical thin walled beams axially loaded, Computers and Structures, 89 (2011) 1406-1416.
[18] J. Kuś, Lateral-torsional buckling steel beams with simultaneously tapered flanges and web, Steel and Composite Structures, 19(4) (2015) 897-916.
[19] P. Ruta, J. Szybinski, Lateral stability of bending non-prismatic thin-walled beams using orthogonal series, Procedia Engineering, 11 (2015) 694-701.
[20] F. Mohri, S.A. Meftah, N. Damil, A large torsion beam finite element model for tapered thin-walled open cross-sections beams, Engineering Structures, 99 (2015) 132-148.
[21] F. Mohri, N. Damil, M. Potier-Ferry, Large torsion finite element model for thin-walled beams, Computers and Structures, 86 (2008) 671–683.
[22] M.J. Iromenger, Finite difference buckling analysis of non-uniform columns, Computers and Structures, 12(5) (1980) 741-748.
[23] T. Asakura, T. Ishizuka, T. Miyajima, M. Toyoda, Finite-difference time-domain analysis of the vibration characteristics of a beam-plate structure using a dimension-reduced model, Applied Acoustics, 292 (2015) 76-82.
[24] B. Indraratna, N.N. Trung, C. Rujikiatkamjorn, S. Soltan, Coupled discrete element–finite difference method for analyzing the load-deformation behavior of a single stone column in soft soil, Computers and Geotechnics, 63 (2015) 267-278.
[25] K.S. Virdi, Finite difference method for nonlinear analysis of structures, Journal of Constructional Steel Research, 62 (2006) 1210-1218.
[26] S.A. Al-Khaabi, G. Aksu, Free vibration analysis of mindlin plates with parabolically varying thickness, Computers and Structures, 34(3) (1990) 395-399.
[27] J.P. Singh, S.S. Dey, Variationa of finite difference approach to buckling of plates of variable stiffness. Computers and Structures 1990; 36(1): 39-45.
[28] B. Suryoatmono, D. Ho, The moment–gradient factor in lateral–torsional buckling on wide flange steel sections, Journal of Constructional Steel Research, 58 (2002) 1247–1264.
[29] J.T. Mottram, Lateral-torsional buckling of thin-walled composite I- beams by the finite difference method, Composites Engineering, 2(2) (1992) 91-104.
[30] B. Asgarian, M. Soltani, F. Mohri, Lateral-torsional buckling of tapered thin-walled beams with arbitrary cross-sections, Thin-Walled Structures, 62 (2013) 96–108.
[31] F. Mohri, N. Damil, M. Potier-Ferry, Linear and non-linear stability analyses of thin-walled beams with mono symmetric I sections, Thin-Walled Structures, 48 (2010) 299–315.
[32] M. Soltani, B. Asgarian, F. Mohri, Elastic instability and free vibration analyses of tapered thin-walled beams by power series method, Journal of constructional steel research, 96 (2014) 106-126.
[33] M. Soltani, B. Asgarian, F. Mohri, Finite element method for stability and free vibration analyses of non-prismatic thin-walled beams, Thin-Walled Structures, 82 (2014) 245-261.
[34] MATLAB Version7.6, MathWorks Inc, USA, 2008.
[35] ANSYS, Version 5.4, Swanson Analysis System, Inc, 2007.