[1] P, Karambakhsh, Determination of lateral pressure of sandy soil using results of calibration of cone penetration test, MSc thesis, Sharif University of Technology, Iran,2008 (in Persian).
[2] M. M., Ahmadi, P., Karambakhsh, A. A., Golestani, Horizontal Stress Estimation Using CPT: A Database Approach, Sharif Journal-Civil Engineering, 2010. (In Persian)
[3] M. B., Menhaj, Computational Intelligence-Volume I: Fundamentals of Neural Networks, Amirkabir university of technology Pub., 2009.
[4] J., Ghaboussi; J. H., Garrett; X., Wu; Knowledge Based Modeling of Material Behavior with Neural Networks, Journal of Engineering Mechanics, ASCE, Vol. 117, No.1, pp. 132-53, 1991.
[5] R. W., Meier; G. J., Rix; Backcalculation of Flexible Pavement Moduli Using Artificial Neural Networks, Transportation Research Record 1448, National Research Council, Washington, D.C., pp. 75-82, 1994.
[6] G., Agrawal; J. L., Chameau; P. L., Bourdeau; Assessingthe Liquefaction Susceptibility at a Site Based on Information from Penetration Testing, Artificial Neural Networks for Civil Engineers: Fundamentals and Applications, ASCE Monograph, New York, pp. 185-214, 1995.
[7] Y. M., Najjar; I. A., Basheer; R., McReynold; Neural Modelling of Kansas Soil Swelling, Transportation Research Record 1526, National Research Council, Washington, D.C., pp. 14-9, 1996.
[8] S. H., Ni; P. C., Lu; C. H., Juang; A Fuzzy Neural Network Approach to Evaluation of Slope Failure Potential, Microcomputers in Civil Engineering, Vol. 11,pp. 59-66, 1996.
[9] C. H., Juang; C. J., Chen; CPT-based Liquefaction Evaluation Using Artificial Neural Networks, Journal of Computer-Aided Civil and Infrastructure Engineering,Vol. 14, No. 2, pp. 221-229, 1999.
[10] C. H., Juang; C. J., Chen; Y. M., Tien; Appraising CPT Based Liquefaction Resistance Evaluation Method Artificial Neural Network Approach, Canadian Geotechnical Journal, Vol. 36, pp. 443-54, 1999.
[11] C. H., Juang; P. C., Lu; Predicting Geotechnical Parameters of Sands from CPT Measurements Using Neural Networks, Computer-Aided Civil and Infrastructure Engineering, Vol. 17, pp. 31-42, 2002.
[12] G., Baldi; R., Bellotti; V., Ghionna; M., Jamiolkowski; E., Pasqualini; Interpretations of CPT’s and CPTU’s, 2nd Part: Drained Penetration of Sands, 4th International Conference on Field Instrumentation and In-situ Measurements, Singapore, pp. 143-156, 1986.
[13] A. K., Parkin; The Calibration of Cone Penetrometers, Proceedings of the 1st International Symposium on Penetration Testing (ISOPT), Vol. 1, pp. 221-243, 1988.
[14] G. T., Houlsby; R. C., Hitchman; Calibration Tests of Cone Penetrometers in Sand, Géotechnique, Vol. 38, No. 1, pp. 39-44, 1988.
[15] M., Jamiolkowski; G., Baldi; R., Bellotti; V., Ghionna; E., Pasqualini; Penetration Resistance and Liquefaction of Sands, Proc. 11th Int. Conf. on Soil Mech. and Found. Eng., A. A. Balkema, Rotterdam, Netherlands, pp. 1891-186, 1985
[16] P. W., Mayne; Tentative Method for Estimating σh0 from qc Data in Sands, Proc. 1st Int. Symposium on Calibration Chamber Testing, Potsdam, NY, Elsevier, Amsterdam, pp. 249-256, 1991.
[17] M. M., Ahmadi; P., Karambakhsh; K0 Determination of Sand Using CPT Calibration Chamber, 2nd Int. Symposium on CPT, Huntington Beach, California, Paper No. 2-14, 2010.
[18] R., Salgado; Analysis of Penetration Resistance in Sands, Ph.D. Thesis, Dept. of Civ. Engineering, University of California, Berkeley, Calif., 1993.
[19] T., Lunne; P. K., Robertson; J. M., Powell; Cone Penetration Testing in Geotechnical Practice, Blackie Academic and Professional, London, UK, 1997.
[20] P. W., Mayne; F. H., Kulhawy; Calibration Chamber Data Base and Boundary Effects Correction for CPT Data, Proceedings of the 1st International Symposium on Calibration Chamber Testing, Potsdam, New York, pp.257-264, 1991.
[21] K., Been; J. H. A., Crooks; L. A., Rothenburg; Critical Appraisal of CPT Calibration Chamber Tests, Proceeding of the 1st International Symposium on Penetration Testing (ISOPT), Vol. 2, pp. 651-660, 1988.
[22] K., Iwasaki; F., Tanizawa; S., Zhou; F., Taksuoka; Cone Resistance and Liquefaction Strength of Sand, Proc. 1stInt. Symp. on Penetration Testing, Vol. 2, Rotterdam:Balkema, pp. 785-791, 1988.
[23] M., Jamiolkowski; D. C. F., Lo-Presti; M., Manassero; Evaluation of Relative Density and Shear Strength of Sands from CPT and DMT, Soil Behavior and Soft Ground Construction, ASCE Geotechnical Special Publication, Vol. 119, pp. 201-238, 2003.
[24] M. M., Ahmadi; P. K., Robertson; A Numerical Study of Chamber Size and Boundary Effects on CPT Tip Resistance in NC Sand, Scientia Iranica, Vol. 15, No. 5, pp. 541-553.
[25] M., Pournaghiazar; A. R., Russel; N., Khalili; Linking Cone Penetration Resistances Measured in Calibration Chambers and the Field, Geotechnique Letters, Vol. 2,pp. 29-35, 2012.
[26] M. A., Shahin; M. B., Jaksa; H. R., Maier; Artificial Neural Network Application in Geotechnical Engineering, Australian Geomechanics, Vol. 36, No. 1,pp. 49-62, 2001.
[27] M. A., Shahin; M. B., Jaksa; H. R., Maier; Data Division for Developing Neural Networks Applied to Geotechnical Engineering, Journal of Computing in Civil Engineering, ASCE, Vol. 18, No. 2, pp. 105-114, 2004.
[28] H., Demuth; M., Beale; Neural Network Toolbox,User’s Guide, Version 3, The Mathworks, Inc., Natick, MA, 1998.
[29] G. J., Bowden; H. R., Maier; G. C., Dandy; Optimal Division of Data for Neural Network Models in Water Resources Applications, Water Resource. Res., Vol. 2, pp.1-11, 2002.