مدلسازی فیزیکی چاه‌های نفت هنگام حفاری با استفاده از سلول سه محوری طراحی شده

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه مهندسی معدن، دانشگاه بین المللی امام خمینی (ره)، قزوین، ایران

چکیده

پپیش‌بینی رفتار چاه‌های نفت هنگام حفاری برای جلوگیری از صرف هزینه‌های زیاد و بروز مشکلات پایداری مهم می‌باشد. از جمله مشکلات می‌توان به شکست دیواره‌ی چاه طی حفاری اشاره کرد. برای مدل‌سازی شکست دیواره‌ی چاه‌های نفت هنگام حفاری می‌توان از نمونه‌های استوانه‌ای توخالی جدار ضخیم استفاده کرد. سلول‌های سه محوری مختلفی برای این آزمایش در دنیا وجود دارند. سلول استفاده شده در این تحقیق بر اساس سلول هوک طراحی شده است. از مزایای این سلول می‌توان به قابلیت مدل‌سازی چاه‌های نفت هنگام حفاری و همچنین مدل‌سازی آزمایش شکست هیدرولیکی اشاره کرد. همچنین امکان اندازه‌گیری کرنش مماسی در حفره مرکزی وجود دارد. این امکانات در بیشتر سلول‌های سه‌محوری به طور همزمان وجود ندارند. برای بررسی کارایی این سلول، نمونه‌های استوانه‌ای توخالی جدار ضخیم از گچ و بتن ساخته شد. در این مقاله از دو مسیر تنش مختلف برای اعمال فشار در سلول سه‌محوری استفاده شده است که عبارتند از: Ϭϴ= ϭ1˃ϭr = ϭ2˃Ϭz = ϭ3، Ϭϴ = ϭ1˃ϭz = ϭ2˃Ϭr= ϭ3 =0. نتایج مطالعات در دو مسیر تنش مختلف نشان می‌دهد که در شرایطی که تنش مماسی ناشی از تنش جانبی، تنش حداکثر باشد، شکست در اطراف چاه به‌صورت برشی در دو جهت مخالف دیواره رخ ‌می‌دهد. هم‌چنین وقوع شکست در دیواره نمونه های استوانه ای جدار ضخیم به علت اختلاف تنش جانبی و فشار داخلی است. با افزایش این اختلاف تنش، عمق شکست و گسترش ترک در دیواره نمونه های استوانه ای جدار ضخیم نیز افزایش خواهد یافت. علاوه بر این،  قابل توجه است که در حضور فشار داخلی، عمق شکست یا ناحیه پلاستیک نسبت به عدم حضور آن کاهش می یابد.

کلیدواژه‌ها


عنوان مقاله [English]

Physical Modelling of Oil Wells During Drilling Using Designed Triaxial Cell

نویسندگان [English]

  • M. Hosseini
  • S. Aghayi
Department of Mining Engineering, Imam Khomeini International University, Qazvin, Iran
چکیده [English]

Behavior prediction of oil well during drilling is important to prevent of instability problems and lots of cost spending. One of the problems can be pointed is failure of oil well wall during drilling. Thick-walled hollow cylindrical specimens can be able to modelling failure of oil well wall during drilling. Different triaxial cells exist for this test in world. Cell was used is designed based on Hoek cell. The benefits of this cell are ability of oil well during drilling and hydraulic fracture modelling. Also it is possible to measure the tangential strain in the center hole. This feature simultaneously is absent in most triaxial cells. To evaluate the performance of this cell, gypsum and concrete hollow cylinder specimens were made to modelling of oil wells during drilling. Literature studies and experimental results showed that, depending on the magnitudes of the applied internal pressure, external pressure and axial load, any of the radial, tangential and axial stresses induced in the cylinder considered as minor, intermediate or major principal stress. Hence, in this paper, two different stress conditions were used that consist: ϭϴ = ϭ1 ˃ ϭr = ϭ2 ˃ ϭz = ϭ3،. ϭϴ = ϭ1 ˃ ϭz = ϭ2 ˃ ϭr = ϭ3 =0. Results showed that, in condition that tangential stress induced of lateral stress is maximum stress, shear failure occurred toward at around well. So, failure of wall of thick wall hollow cylinder is caused by the deviator stresses between lateral stress and inner pressure. By increasing deviator stresses, the plastic zone will increase around wall of thick walled hollow cylinder specimens. It is noteworthy that, presence of internal pressure reduces the breakouts propagation.

کلیدواژه‌ها [English]

  • Physical Modelling
  • Triaxial Cell
  • Drilling
  • Oil
  • Well
[1] M. Alsayed, Utilising the Hoek triaxial cell for multiaxial testing of hollow rock cylinders, International Journal of Rock Mechanics and Mining Sciences, 39(3) (2002) 355-366.
[2] T. Lin, Experimental Study on Borehole Collapse, Advances in Petroleum Exploration and Development, 10(2) (2016) 126-129.
[3] S. Hashemi, N. Melkoumian, A. Taheri, A borehole stability study by newly designed laboratory tests on thick-walled hollow cylinders, Journal of Rock Mechanics and Geotechnical Engineering, 7(5) (2015) 519-531.
[4] F.D. Adams, An experimental contribution to the question of the depth of the zone of flow in the earth's crust, The Journal of Geology, 20(2) (1912) 97-118.
[5] L.V. King, On the limiting strength of rocks under conditions of stress existing in the earth's interior, The Journal of Geology, 20(2) (1912) 119-138.
[6] P. Bridgman, The failure of cavities in crystals and rocks under pressure, American Journal of Science, (268) (1918) 243-268.      [7] E.C. Robertson, Experimental study of the strength of rocks, Geological Society of America Bulletin, 66(10) (1955) 1275-1314.
[8] E. Hoskins, The failure of thick-walled hollow cylinders of isotropic rock, in: International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, Elsevier, 1969, pp. 99-125.
[9] M.I. Alsayed, Rock behaviour under multiaxial compression, Newcastle University, 1996.
[10] F. Santarelli, E. Brown, Failure of three sedimentary rocks in triaxial and hollow cylinder compression tests, in: International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, Elsevier, 1989, pp. 401-413.
[11] N. Gay, Fracture growth around openings in large blocks of rock subjected to uniaxial and biaxial compression, in: International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, Elsevier, 1976, pp. 231-243.
[12] S.C. Bandis, J. Lindman, N. Barton, Three-dimensional stress state and fracturing around cavities in overstressed weak rock, in: 6th ISRM Congress, International Society for Rock Mechanics, 1987.
[13] R. Ewy, N. Cook, Deformation and fracture around cylindrical openings in rock—I. Observations and analysis of deformations, in: International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, Elsevier, 1990, pp. 387-407.
[14] R. Ewy, N. Cook, Deformation and fracture around cylindrical openings in rock—II. Initiation, growth and interaction of fractures, in: International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, Elsevier, 1990, pp. 409-427.
[15] P. Perie, R. Goodman, Evidence of new failure patterns in a thick-walled cylinder experiment, in: Proc. 12th ETCE/ASME Conf, 1989, pp. 23-27.
[16] A. Elkadi, J. Van Mier, Scaled hollow-cylinder tests for studying size effect in fracture processes of concrete, fracture mechanics of concrete structures, 1 (2004) 229-236.
[17] L. Warlick, H. Abass, M. Khan, C. Pardo Techa, A. Tahini, D. Shehri, H. Badairy, Y. Shobaili, T. Finkbeiner, S. Perumalla, Evaluation of wellbore stability during drilling and production of open hole horizontal wells in a carbonate field, in: SPE Saudi Arabia Section Technical Symposium, Society of Petroleum Engineers, 2009.
[18] T. Meier, E. Rybacki, T. Backers, G. Dresen, Influence of bedding angle on borehole stability: a laboratory investigation of transverse isotropic oil shale, Rock Mechanics and Rock Engineering, 48(4) (2015) 1535-1546.
[19] S. Hashemi, N. Melkoumian, Effect of different stress path regimes on borehole instability in poorly cemented granular formations, Journal of Petroleum Science and Engineering, 146 (2016) 30-49.
[20] C. Santana, F. Likrama, Workflow on Incorporating Thick-Walled Cylinder Test Results in Finite Element Models of near Wellbore for Sanding Prediction Studies, in: 50th US Rock Mechanics/Geomechanics Symposium, American Rock Mechanics Association, 2016.
[21] S. Hashemi, A. Taheri, N. Melkoumian, An experimental study on the relationship between localised zones and borehole instability in poorly cemented sands, Journal of Petroleum Science and Engineering, 135 (2015) 101-117.
[22] E. Hoek, J.A. Franklin, A simple triaxial cell for field or laboratory testing of rock, Imperial College of Science and Technology, University of London, 1967.
[23] B. Pasic, N. Gaurina-Medimurec, D. Matanovic, Wellbore instability; causes and consequences, paper Rudarsko-geološko-naftni zbornik, in, Zagreb, 2007.