مدل رفتاری همزمان خرابی لگاریتمی و پلاستیک برای شبیه سازی عددی رفتار سنگها

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده مهندسی معدن و متالورژی، دانشگاه صنعتی امیرکبیر، تهران، ایران

چکیده

مواد سنگی تحت تنشهای بالا، رفتار مکانیکی غیرخطی، برگشت‌ناپذیر، همراه با زوال صلبیت و نرم شونده از خود نشان می‌دهند. دلیل غالب رفتارهای غیرخطی سنگ جریان پلاستیسیته و فرآیند خرابی به صورت توامان در سنگ می‌باشد. از منظر میکروسکوپی جریان پلاستیک با لغزش برشی موضعی در شبکه کریستالی ماده کنترل می‌شود که از منظر ماکروسکوپی موجب کرنش های برگشت ناپذیر می شود. فرآیند خرابی از منظر میکروسکوپی با رشد، انتشار و گسترش ریزترک‌ها همراه است. نتیجه پدیدار شناختی و ماکروسکوپی فرآیند خرابی، زوال صلبیت و رفتار نرم‌شوندگی سنگ می‌باشد.

در این مقاله، به‌منظورشبیه‌سازی رفتار برگشت‌ناپذیر و زوال خواص الاستیک مواد سنگی تحت بارگذاری، از مدل توأمان خرابی و پلاستیسیته استفاده شده‌است. برای توصیف زوال صلبیت و رفتار نرم‌شوندگی پس از مقاومت حداکثر از مدل خرابی لگاریتمی، وبرای لحاظ کرنش‌های برگشت‌ناپذیر از مدل پلاستیک با تابع تسلیم دراکر-پراگر استفاده شده‌است. پس از توسعه مدل رفتاری جدید و ارائه الگوریتم آن، این مدل توسعه‌ داده‌شده در محیط نرم افزارVC++ کدنویسی و سپس به عنوان یک مدل رفتاری جدید و مستقل، در محیط نرم‌افزار المان مجزایUDEC، استفاده شد. در نهایت، رفتار نمونه سنگ آهک اوولیتی تحت بارگذاری فشاری و کششی با استفاده از مدل رفتاری توسعه‌یافته، شبیه‌سازی، و با نتایج آزمایشگاهی مقایسه گردید. براساس نتایج شبیه‌سازی عددی، رفتار نرم‌شوندگی، زوال صلبیت و تغییر شکل‌های برگشت‌ناپذیر به خوبی مطابق مشاهدات آزمایشگاهی بازتولید و شبیه سازی شده است. افزایش مقاومت و شکل‌پذیری سنگ با افزایش فشار همه جانبه نیز در نتایج مدل‌سازی عددی مشهود می‌باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

A Coupled Logarithmic Damage and Plastic Model to Numerical Simulation of Rocks Failure Mechanism

نویسندگان [English]

  • H. Molladavood
  • M. Abdi
  • H. Salarirad
1 Department of Mining and Metallurgical Engineering, Amirkabir University of Technology, Tehran , Iran
چکیده [English]

The rock materials surrounding the underground excavations typically demonstrate nonlinear mechanical response under high stress states. The dominant causes of irreversible behavior are plastic flow and damage process. The plastic flow is controlled by the presence of local shear stresses which cause dislocation to some preferential elements due to existing defects. During this process, the net number of bonds remains practically unchanged. The main cause of irreversible changes in quasi-brittle materials such as rock is the damage process occurring within the material.
In this paper, a coupled logarithmic damage and plastic model was used to simulate irreversible deformations and stiffness degradation of rock materials under loading. In this model, damage evolution and plastic flow rules were formulated in the framework of irreversible thermodynamics principles. To take into account the stiffness degradation and softening in post-peak region, logarithmic damage variable was implemented. Also, a plastic model with Drucker-Pruger yield function was used to model plastic strains. Then, an algorithm was proposed to calculate the numerical steps based on the proposed coupled plastic and damage constitutive model. The developed model was programmed in VC++ environment. Then, it was used as a separate and new constitutive model in DEM environment code (UDEC). Finally, the experimental oolitic limestone rock behavior was simulated based on the developed model. The irreversible strains, softening and stiffness degradation were reproduced in the numerical results. Furthermore, the confinement pressure dependency of rock behavior was simulated in according to experimental observations.

کلیدواژه‌ها [English]

  • Damage Mechanics
  • Plasticity
  • Stiffness Degradation
  • Logarithmic Damage Variable
  • Brittleness Paramete
[1] B. T. Kamal, S. Yazdani, Combined damage and plasticity approach for modeling brittle materials with application to concrete, International Journal of Civil and Structural Engineering, 3(3) (2013) 513-525.
[2] D. Addessi, S. Marfia, E. Sacco, A Plastic Nonlocal Damage Model, Computer methods in applied mechanics and engineering, 191(13-14) (2002) 1291-1310.
[3] Z. P. Bazant, S. S. Kim, Plastic-Fracturing Theory for Concrete, ASCE journal of engineering mechanics, 105(3) (1979) 407-421.
[4] A. Dragon, Z. Morz, A Continuum Theory for Plastic-Brittle Behavior of Rock and Concrete,International Journal of Engineering Science, 17(2) (1979) 121-137.
[5] E. Hansen, K. Willam, I. Carol, A Two-Surface Anisotropic Damage/Plasticity Model for Plain Concrete, in fracture mechanics of concrete materials, de Borst, R. (Ed.), A. A. Balkema, Rotterdam, (2001) 549-556.
[6] A. D.Jefferson, Craft – A Plastic-Damage-Contact Model for Concrete. I. Model Theory and Thermodynamic Considerations, International Journal of Solids and Structures, 40(22) (2003) 5973-5999.
[7] M. Ortiz, E. P. Popov, A Physical Model for the Inelasticity of Concrete, Proceedings of Royal Society of London, A383, (1982) 101-125.
[8] M. Ortiz, A Constitutive Theory for the Inelastic Behavior of Concrete, Mechanics of materials, 4(1) (1985) 67-93.
[9] M. R. Salari, S. Saeb, K. J. Willam, S. J. Patchet, R. C. Carrasco, A Coupled Elastoplastic Damage Model for Geomaterials, Computer methods in applied mechanics and engineering, 193(27-29) (2004) 2625-2643.
[10] J. C. Simo, J. W. Ju, Strain-and-Stress-Based Continuum Damage Models. I. Formulation, International Journal of solids and structures, 23(7) (1987) 821-840.
[11] G. Z. Voyiadjis, Z. N. Taqieddin, P. I. Kattan, Anisotropic Damage-Plasticity Model for Concrete, International journal of plasticity, 24(10) (2008) 1946-1965.
[12] S. Yazdani, S. Karnawat, A Constitutive Theory for Brittle Solids with Application to Concrete, International journal of damage mechanics, 5(1) (1996) 93-110.
[13] S. Yazdani, H. L. Schreyer, Combined Plasticity and Damage Mechanics Model for Plain Concrete, ASCE journal of engineering mechanics, 116(7) (1990) 1435-1450.
[14] H. Molladavoodi, Sliding and damage criteria investigation of a micromechanical damage model for closed frictional microcracks, Computers and Geotechnics, 67 (2015) 135-141.
[15] J.F. Shao, Y. Jia, D. Kondo, A. S. Chiarelli, A coupled elastoplastic damage model for semi-brittle materials and extension to unsaturated conditions, Mechanics of Materials, 38(3) (2006) 218-232.
[16] G. Z. Voyiadjis, B. Deliktas, A coupled anisotropic damage model for the inelastic response of composite materials, Comput.Methods Appl. Mech. Engrg.,183(3-4) (2000) 159-199.
[17] I. Carol, E. Rizzi, K. Willam, On the formulation of anisotropic elastic degradation I. Theory based on a pseudo-logarithmic damage tensor rate, International Journal of Solids and Structures,38(4) (2001)491-518.
[18] H. Molladavoodi, A. Mortazavi, A damage-based numerical analysis of brittle rocks failure mechanism, Finite Elements in Analysis and Design, 9 )2011( 911-1003.
[19] A. Mortazavi, H. Molladavoodi, A numerical investigation of brittle rock damage model in deep underground openings, Engineering Fracture Mechanics, 90 (2012) 101-120.
[20] J. Lemaitre, R. Desmorat, Engineering Damage Mechanics, Springer, 2005 .
[21] N. Conil, I. Djeran-Maigre, R. Cabrillac, K. Su,Thermodynamics modelling of plasticity and damage of argillite, C. R. Mecanique, 332(10) (2004) 841–848.
[22] I. Carol, E.Rizzi, K.Willam, On the formulation of anisotropic elastic degradation II. Generalized pseudo-Rankine model for tensile damage, International Journal of Solids and Structures, 38(4), (2001) 519-546.
[23] W. Zhang, Y. Cai, Continuum Damage Mechanics and Numerical Applications, Springer, 2001.
[24] B. H. G. Brady, E. T. Brown, Rock Mechanics for underground mining,Third Edition, Springer, 2005.