بررسی پارامتریک عدم قطعیت در شاخص اعتماد سازه‌های قاب خمشی بتنی با استفاده از تحلیل دینامیکی افزایشی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده مهندسی عمران، دانشگاه کردستان، سنندج، ایران

2 دانشکده مهندسی، دانشگاه صنعتی خاتم الانبیاء بهبهان، بهبهان، ایران

چکیده

چکیده: در سال‌های اخیر طراحی سازه‌ها بر اساس تئوری قابلیت اطمینان توجه بسیاری را به خود جلب کرده است. محققین روش‌های متفاوتی برای محاسبه شاخص اعتماد ارائه داده‌اند که هر کدام از نظر فرضیات، سادگی و یا دقت متفاوت هستند. با توجه به تنوع روش‌های موجود لازم است اثرات عدم قطعیت در هر روش به نحو مناسبی در نظر گرفته شود. در این پژوهش به کمک تئوری قابلیت اطمینان عدم قطعیت های ناشی از روش‌های انتخاب رکورد، در نظر گرفتن اثرات فروریزش در توزیع‌های آماری، روش‌های تخمین نیاز و ظرفیت لرزه ای و در نظر گرفتن عدم قطعیت های مبانی، بر ایمنی عملکردلرزه ای سازه‌های بتن آرمه در سطوح عملکردی بهره برداری، بهره برداری بی وقفه، ایمنی جانی و آستانه ی فروریزش بررسی می شود. نتایج نشان می‌دهد که در نظر گرفتن عدم قطعیت ناشی از روش‌های انتخاب رکورد بر نتایج شاخص اعتماد سازه‌ها تاثیر قابل ملاحظه دارد. همچنین در سطح عملکردی آستانه‌ی فروریزش، در نظر گرفتن اثرات فروریزش بر مقادیر شاخص اعتماد سازه‌ها ضروری به نظر می‌رسد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Parametric Assessment of Uncertainties in Reliability Index of Reinforced Concrete MRF Structures Using Incremental Dynamic Analysis

نویسندگان [English]

  • A. Yazdani 1
  • A. Mehrabi Moghaddam 1
  • M.S. Shahidzadeh 2
1 Department of Civil Engineering, University of Kurdistan, Sanandaj, Iran
2 Department of Engineering, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran
چکیده [English]

Recently, increasing attention has been paid to reliability based design methods due to its ability to consider different uncertainties associated with demand and capacity. Recent studies show that presence of unaccounted uncertainty may inflict unacceptable bias to computation of reliability index.
Exact computations of global reliability index for multi-member structures are only possible through simulation methods. Therefore, researchers have proposed numerous methods using simplified assumption for reliability index calculation. Each method is different in the simplicity and accuracy it offers. For this purpose, in assessment of the effect of different uncertainty different methods of record selection for IDA analysis, probabilistic distribution of demand data and demand-capacity relation assumptions were used in this study to compute reliability index for “Operational”, “Immediate Occupancy”, “Life Safety” and “Collapse Prevention” limit states. The results showed that considering epistemic uncertainty in record selection and probabilistic distribution dramatically affects the reliability index and thus should be considered in future analyses.

کلیدواژه‌ها [English]

  • Uncertainty
  • Reliability Incremental Dynamic Analysis Conditional Mean Spectra Reinforced Concrete
[1] FEMA, 273: NEHRP Guidelines for the seismic rehabilitation of buildings, Federal Emergency Management Agency, (1997).
[2] A.H.-S. Ang, W.H.-C. Tang, Probability Concepts in Engineering Planning and Design: Volume II---Decision, Risk and Reliability, John Wiley & Sons Inc, 1984.
[3] S.-Y. Yun, R.O. Hamburger, C.A. Cornell, D.A. Foutch, Seismic Performance Evaluation for Steel Moment Frames, Journal of Structural Engineering, 128(4) (2002) 534-545.
[4] M. Stoica, R.A. Medina, R.H. McCuen, Improved probabilistic quantification of drift demands for seismic evaluation, Structural Safety, 29(2) (2007) 132-145.
[5] A. Yazdani, P. Zargar, Reliability Index Evaluation of MRF Steel Structures Designed According to Iranian Code, Civil Engineering, 31.2(1.2) (2015) 83-90 (In Persian).
[6] R. Hamburger, Performance-based seismic engineering: The next generation of structural engineering practice, EQE Summary Report, (1996).
[7] M. Dolšek, Simplified method for seismic risk assessment of buildings with consideration of aleatory and epistemic uncertainty, Structure and Infrastructure Engineering, (2011) 1-15.
[8] M. Banazadeh, S.A. Jalali, Probabilistic Seismic Demand Assessment of Steel Moment Frames with Sideplate Connections, Amirkabir Journal of Civil and Environmental Engineering, 44(2) (2013) 47-64 (In Persian).
[9] M. Banazadeh, S.E. Fereshtehnejad, Probabilistic Assessment of Collapse Limit- State in Steel Frames by Simulating Failure Modes Using Bayesian Probability Network, Amirkabir Journal of Civil and Environmental Engineering, 45(2) (2013) 83-96 (In Persian).
[10] M. Lotfollahi, M. Banazadeh, M.M. Alinia, Application of system reliability-based assessment for collapse fragility of braced moment-resisting frames, The Structural Design of Tall and Special Buildings, 24(11) (2015) 757-778.
[11] M. Shokrabadi, M. Banazadeh, M. Shokrabadi, A. Mellati, Assessment of seismic risks in code conforming reinforced concrete frames, Engineering Structures, 98 (2015) 14-28.
[12] NBRI, Topic 6: Loads on Buildings (Revision 3), 2013 (In Persian).
[13] NBRI, Topic 9: Design and Construction of RC Buildings (Revision 4), 2013 (In Persian).
[14] BHRC, Earthquake Resistant Design of Buildings: Standard 2800 (Revision 4), 2014 (In Persian).
[15] C.A. Cornell, F. Jalayer, R.O. Hamburger, D.A. Foutch, Probabilistic Basis for 2000 SAC Federal Emergency Management Agency Steel Moment Frame Guidelines, Journal of Structural Engineering, 128(4) (2002) 526-533.
[16] J.R. Benjamin, C.A. Cornell, Probability, statistics, and decision for civil engineers, Courier Corporation, 2014.
[17] F. Jalayer, C.A. Cornell, A technical framework for probability-based demand and capacity factor (DCFD) seismic formats., Report No. RMS-43, Stanford University, 2003.
[18] N. Shome, C.A. Cornell, Probabilistic seismic demand analysis of nonlinear structures, Report No. RMS-35, Stanford University, 1999.
[19] FEMA, Recommended seismic design criteria for new steel moment frame buildings; Rep. No. FEMA-350, Prepare by SAC Joint Venture for FEMA, Washington, 2000.
[20] F. Jalayer, C.A. Cornell, Alternative non-linear demand estimation methods for probability-based seismic assessments, Earthquake Engineering & Structural Dynamics, 38(8) (2009) 951-972.
[21] P. Tothong, C.A. Cornell, Structural performance assessment under near-source pulse-like ground motions using advanced ground motion intensity measures, Earthquake Engineering & Structural Dynamics, 37(7) (2008) 1013-1037.
[22] J.W. Baker, C. Allin Cornell, Spectral shape, epsilon and record selection, Earthquake Engineering & Structural Dynamics, 35(9) (2006) 1077-1095.
[23] L.S. Burks, J.W. Baker, Occurrence of negative epsilon in seismic hazard analysis deaggregation, and its impact on target spectra computation, Earthquake Engineering & Structural Dynamics, 41(8) (2012) 1241-1256.
[24] J.W. Baker, C. Allin Cornell, A vector-valued ground motion intensity measure consisting of spectral acceleration and epsilon, Earthquake Engineering & Structural Dynamics, 34(10) (2005) 1193-1217.
[25] A. Yazdani, A. Shahpari, M.R. Salimi, The Use of Monte-Carlo Simulations in Seismic Hazard Analysis at Tehran and Surrounding Areas, IJE TRANSACTIONS C: Aspects, 25(2) (2012) 165-171.
[26] A. Yazdani, M.S. Abdi, Stochastic Modeling of Earthquake Scenarios in Greater Tehran, Journal of Earthquake Engineering, 15(2) (2011) 321-337.
[27] A.M. Reinhorn, S.K. Kunnath, R. Valles-Mattox, IDARC2D Version 7.0: A computer program for the inelastic damage analysis of reinforced concrete buildings, State University of New York at Buffalo, (1998).
[28] ISO-2394, General principles on reliability for structures, 2nd ed., Geneve, Switzerland, 1998.