تاثیر نانو کلوئید اکسید گرافن و نانو دی‌اکسید تیتانیوم بر خواص مکانیکی و نفوذ یون کلراید در بتن

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی عمران، واحد شیراز، دانشگاه آزاد اسلامی، شیراز، ایران

2 گروه مهندسی عمران، دانشکده‌ی عمران، دانشگاه صنعتی شریف (پردیس کیش)، کیش، ایران

چکیده

سازه‌های دریایی بتن مسلح که در مناطق ساحلی و خورنده باشند مورد هجوم یون‌‌های مخرب کلراید قرار می‌‌گیرند. علاوه بر این، امواج دریا و وزش طوفان‌های ساحلی با وارد آوردن تنش‌های موثر به بتن، موجب بروز خوردگی، ساییدگی، تغییرات متوالی خیس و خشک شدن و همچنین واکنش‌های شیمیایی یون‌های کلراید و سولفات در بتن می‌شوند. یکی از معضلات اصلی سازه‌های بتنی نزدیک به ساحل، نفوذپذیری بالای آن‌ها در برابر رطوبت و آب است که این ویژگی سبب بروز مشکلاتی نظیر خرابی و ترک‌خوردگی در تمامی بخش‌های بتن می‌شود. به‌ویژه، یون‌های کلراید و سولفات که از مهم‌ترین عوامل خوردگی بتن مسلح به شمار می‌روند، می‌توانند به راحتی به دلیل نفوذپذیری بالا وارد سازه شده و موجب آسیب‌های گسترده گردند. بنابراین باید با اتخاذ روش‌‌هایی بتوان میزان نفوذپذیری بتن را به حداقل رساند. در این تحقیق با هدف کاهش نفوذپذیری بتن و افزایش دوام آن در برابر نفوذ یون کلراید از ترکیب نانو کلوئید اکسید گرافن و نانو دی‌‌اکسید تیتانیوم در بتن استفاده شد. آزمایش‌‌های انجام شده در این تحقیق شامل اسلامپ، مقاومت فشاری در سنین مختلف، میزان جذب آب در بتن سخت شده و دوام بتن در برابر نفوذ یون کلراید به روش RCMT می‌‌باشد. نتایج این تحقیق نشان داد که استفاده از ترکیب نانو کلوئید اکسید گرافن و نانو دی‌‌اکسید تیتانیوم تاثیر محسوسی بر روی اسلامپ بتن نداشت. اما افزودن نانو کلوئید اکسید گرافن آثار مخربی بر روی واکنش هیداراتاسیون سیمان داشته و میزان مقاومت فشاری بتن را کاهش داد. بطوریکه افزودن 1/5% نانو کلوئید اکسید گرافن مقاومت فشاری 90 روزه بتن را تا 22/5% کاهش داد. در حالیکه این مقدار نانو کلوئید اکسید گرافن در بتن تا 47% میزان مساحت نفوذ یون کلراید را در بتن کاهش داد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The Effect of Nanographene and Nano Titanium Dioxide on the Mechanical Properties and Chloride Ion Penetration in Concrete

نویسندگان [English]

  • Leila Shahryari 1
  • mohamadamin abedzadeh 2
  • hossein zarei 1
1 Assistant Professor, Department of Civil Engineering, Shi.C., Islamic Azad University, Shiraz, Iran
2 M.Sc. in Civil Engineering (Construction Engineering and Management), Faculty of Civil Engineering, Sharif University of Technology (Kish Campus), Kish, Iran
چکیده [English]

Reinforced concrete marine structures located in coastal and corrosive environments are subjected to the attack of destructive chloride ions. In addition, sea waves and coastal storms impose significant stresses on the concrete, resulting in corrosion, abrasion, repeated cycles of wetting and drying, and chemical reactions involving chloride and sulfate ions. One of the main challenges for concrete structures near the shore is their high permeability to moisture and water, which leads to issues such as deterioration and cracking throughout the concrete. In particular, chloride and sulfate ions, which are among the primary causes of corrosion in reinforced concrete, can easily penetrate the structure due to high permeability and cause extensive damage. Therefore, it is essential to employ methods to minimize the permeability of concrete. In this study, with the aim of reducing concrete permeability and improving its durability against chloride ion penetration, a combination of nanographene and nano titanium dioxide was used in the concrete mix. The tests conducted in this study included slump, compressive strength at different ages, water absorption in hardened concrete, and durability against chloride ion penetration using the RCMT method. The results demonstrated that the use of the nanographene and nano titanium dioxide combination did not significantly affect the concrete slump, but the addition of nanographene negatively impacted the cement hydration reaction and reduced the compressive strength of the concrete. Specifically, the addition of 1.5% nanographene decreased the 90-day compressive strength by up to 22.5%. However, this amount of nanographene reduced the chloride ion penetration area in the concrete by up to 47%.

کلیدواژه‌ها [English]

  • Chloride Ion Penetration
  • RCMT Method
  • Nanographene
  • Nano Titanium Dioxide
  • Marine Structures
  1. Soo Lee, S. Galato, M. Peterson, H.G. Riella, A.M. Bernardin, Inorganic Pigments Made From The Recycling Of Coal Mine Drainage Treatment Sludge, J.Environ. Manag. 88 (2008) 1280–1284.
  2. Nedad Naderi, G., Khoshkalam, K., & Rostami, M. (2021). Comparative application of titanium dioxide, nano-silica, and silicon fume in self-cleaning properties of concrete façade for sustainable development. Structural Engineering and Construction, 8(Special Issue 2), 44–58.
  3. Yousefnia Nia, H., & Jabbari, M. M. (2022). Application of alumina nanoparticles to improve some mechanical properties and enhance wear resistance of concrete. Civil Engineering Journal of Amirkabir University, 54(11), 4343–4364. https://doi.org/10.22060/ceej.2022.21040.7603
  4. Shokrani, M., & Naderi, M. (2021). Experimental study of the effect of graphene oxide nanoparticles on the mechanical behavior of cementitious composites and water transfer characteristics in concrete. Structural Engineering and Construction, 8(Special Issue 3), 39–56.
  5. Shokrani, M., & Naderi, M. (2023). Evaluation of compressive strength and permeability of G-OX concrete using the ultrasonic method. Civil Engineering Journal of Amirkabir University, 55(2), 471–490.
  6. Farhmandzadeh, D., & Dashti, M. (2023). Nanomaterials and their applications in concrete. New Engineering Sciences Research, 48(8), 9–16.
  7. Madandost, R., & Deylami Pashtejoui, S. (2021). A study on the compressive strength and elastic modulus of self-compacting concrete containing nanomaterials. Structural Engineering and Construction.
  8. Ghorbani, A., Ghorbani, M., & Shokati, G. (2019). Comparative tests on fresh self-consolidating concrete containing nanoparticles. [Details incomplete].
  9. Alizadeh Lasaki, R., & Ramazan. (2019). Comparative tests on fresh self-compacting concrete containing nanoparticles. Civil Engineering and Projects Journal, 1(3), 57–67.
  10. Ramazani Pour, Y., Yadak Yiraghi, Y., Zolghadr Nseb, R., & Ramazani Pour, A. M. (2022). Mechanical properties and chloride ion permeability of concretes containing calcined clay. Civil Engineering Journal of Amirkabir University, 54(3), 1119–1132.
  11. Liu, Y., Zhang, L., Wang, H., & Zhao, D. (2023). Effects of various nanoparticles on hydration process and mechanical properties of concrete. Construction and Building Materials, 341, 127892. https://doi.org/10.1016/j.conbuildmat.2022.127892
  12. Wenqiu, L., Chen, F., & Zhao, Q. (2022). Influence of graphene oxide on mechanical performance of cement-based materials. Journal of Materials in Civil Engineering, 34(6), 04022112. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003892
  13. Yang, D. H., Lee, S., & Kim, J. (2022). Optimal dosage and effects of nanographene on elasticity and tensile strength of concrete. Materials Letters, 307, 130988. https://doi.org/10.1016/j.matlet.2021.130988
  14. Li, J. Y., Wang, P., & Xu, X. (2021). Effects of carbon nanotubes on mechanical behavior and porosity of hardened cement paste. Materials Today Communications, 26, 101993. https://doi.org/10.1016/j.mtcomm.2020.101993
  15. Zhou, P., Xiong, L., & Huang, Y. (2021). Enhancement of hydration and mechanical properties in concrete by low dosage graphene oxide. Construction and Building Materials, 268, 121097. https://doi.org/10.1016/j.conbuildmat.2020.121097
  16. Khazaei Fayyaz Jahan, S., Gholami, M., & Rahimi, H. (2021). Effect of nano-TiO₂ on the rheological and self-cleaning properties of concrete. Construction and Building Materials, 275, 122176. https://doi.org/10.1016/j.conbuildmat.2020.122176
  17. Ehsani, M., Alizadeh, A., & Zarei, M. (2020). Influence of titanium dioxide nanoparticles on the strength and uniformity of concrete. Journal of Building Engineering, 32, 101658. https://doi.org/10.1016/j.jobe.2020.101658
  18. Nazari, A., Riahi, S., & Bagheri, A. (2020). Optimum content of nano-TiO₂ for early-age flexural strength and hydration rate of self-compacting concrete. Materials Science and Engineering: A, 784, 139262. https://doi.org/10.1016/j.msea.2020.139262
  19. Salami, M., Yazdani, R., & Reisi, M. (2020). Durability performance of concrete with nano-silica and polypropylene fibers in freeze–thaw cycles. Construction and Building Materials, 236, 117645. https://doi.org/10.1016/j.conbuildmat.2019.117645
  20. Li, S., Qian, X., Wang, D., & Lin, Z. (2019). Effects of nano-TiO₂ on seawater resistance and durability of concrete. Cement and Concrete Composites, 101, 41–49. https://doi.org/10.1016/j.cemconcomp.2019.04.005
  21. Sengiz, R., & Tasdemir, M. A. (2019). Influence of graphene nanofiber addition on flexural strength of concrete composites. Materials Research Express, 6(8), 085618. https://doi.org/10.1088/2053-1591/ab22ba
  22. Dou, Y., Li, S., & Yu, J. (2019). Mechanical behavior of cement-based composites with various contents of graphene oxide. Composites Part B: Engineering, 175, 107158. https://doi.org/10.1016/j.compositesb.2019.107158
  23. Esmaeili, H., Gholhaki, M., & Yari, K. (2018). Effect of nano-TiO₂ on mechanical properties and microstructure of cement mortar. Advances in Concrete Construction, 6(6), 659-675. https://doi.org/10.12989/acc.2018.6.6.659
  24. Mohammadi, Y., Tavakkolizadeh, M., & Ghasemi, H. (2018). Comparative study of nanographene and graphene oxide on mechanical properties of concrete. Construction and Building Materials, 185, 595–604. https://doi.org/10.1016/j.conbuildmat.2018.07.092
  25. Sennglakpam, S., Singh, N., & Gurung, B. (2017). Resistance of concrete with graphene oxide to sulfate and carbonation attacks. Case Studies in Construction Materials, 6, 57–67. https://doi.org/10.1016/j.cscm.2017.01.006
  26. Bairagi, N., Patel, J., & Shah, V. (2016). The impact of nano-TiO₂ and polypropylene on compressive strength of geopolymer concrete. Materials Today: Proceedings, 3(6), 1864–1870. https://doi.org/10.1016/j.matpr.2016.04.154
  27. Orakzai, M. A. (2021). Hybrid effect of nano-alumina and nano-titanium dioxide on the mechanical properties of concrete. Case Studies in Construction Materials, 14, e00483.
  28. Li, Z., Han, B., Yu, X., Dong, S., Zhang, L., Dong, X., & Ou, J. (2017). Effect of nano-titanium dioxide on the mechanical, electrical properties, and microstructure of reactive powder concrete. Materials Research Express, 4(9), 095008.
  29. Rawat, G., Gandhi, S., & Murthy, Y. I. (2023). Durability aspects of concrete containing nano-titanium dioxide. ACI Materials Journal, 120, 25–36.
  30. Abu El-Hassan, K., Hakeem, I. Y., Amin, M., Tayeh, B. A., Zeyad, A. M., Agwa, I. S., & Elsakhawy, Y. (2024). Effects of nano titanium and nano silica on properties of high-strength concrete incorporating heavyweight aggregate. Structural Concrete, 25(1), 239–264.
  31. Sorathiya, J., Shah, S., & Kacha, S. (2017). Effect of adding nano titanium dioxide (TiO₂) on the compressive strength of cementitious concrete. Kalpa Publications in Civil Engineering, 1, 219–225.
  32. Ghanim, A. A. J., Amin, M., Zeyad, A. M., Tayeh, B. A., & Agwa, I. S. (2023). Effect of modified nano-titanium and fly ash on the properties of ultra-high-performance concrete. Structural Concrete, 24(5), 6815–6832.
  33. Mohseni, E., Tang, W., & Wang, S. (2019). Investigation of the role of nano-titanium on corrosion and thermal performance of concrete with macro-encapsulated PCM. Molecules, 24(7), 1360.
  34. Chinthakunta, R., Ravella, D. P., Chand, M. S. R., & Yadav, M. J. (2021). Performance evaluation of self-compacting concrete containing fly ash, silica fume, and nano titanium oxide. Materials Today: Proceedings, 43, 2348–2354.
  35. Elbelacy, A. N., Mohamed, A. G., & Sallam, E. A. (2022). Experimental investigation of nano concrete with nano silica, nano titanium, and nano aluminum. NeuroQuantology, 20(5), 3403.
  36. Akarsh, P. K., Shrinidhi, D., Marathe, S., & Bhat, A. K. (2022). Graphene oxide as a nanomaterial in developing sustainable concrete: A brief review. Materials Today: Proceedings, 60, 234–246.
  37. Chuah, S., Pan, Z., Sanjayan, J. G., Wang, C. M., & Duan, W. H. (2014). Nano-reinforced cement and concrete composites and new insights from graphene oxide. Construction and Building Materials, 73, 113–124.
  38. Maglad, A. M., Zaid, O., Arbili, M. M., Ascensão, G., Șerbănoiu, A. A., Grădinaru, C. M., … & de Prado-Gil, J. (2022). A study on the properties of geopolymer concrete modified with nano graphene oxide. Buildings, 12(8), 1066.
  39. Seddighi, F., Pachideh, G., & Salimbahrami, S. B. (2021). Mechanical and microstructural properties of autoclaved aerated concrete containing nano-graphene. Journal of Building Engineering, 43, 103106.
  40. Dong, S., Wang, Y., Ashour, A., Han, B., & Ou, J. (2020). Nano/micro-structures and mechanical properties of ultra-high-performance concrete incorporating graphene with different lateral sizes. Composites Part A: Applied Science and Manufacturing, 137, 106011.
  41. Devi, S. C., & Khan, R. A. (2020). Effect of graphene oxide on the mechanical and durability performance of concrete. Journal of Building Engineering, 27, 101007.
  42. Zhan, P., Xu, J., Wang, J., Zuo, J., & He, Z. (2022). A review of recycled aggregate concrete modified by nanosilica and graphene oxide: Materials, performance, and mechanisms. Journal of Cleaner Production, 375, 134116.
  43. Dalal, S. P., & Dalal, P. (2021). Experimental investigation on strength and durability of graphene nanoengineered concrete. Construction and Building Materials, 276, 122236.