تاثیر فشار تزریق آب بر عملکرد شمع‌های پیچشی پره‌ای مخروطی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی عمران، واحد علوم تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران

2 دانشکده مهندسی عمران و محیط زیست، دانشگاه صنعتی امیرکبیر، تهران، ایران

چکیده

نوع رسوب‌گذاری نهشته‌های لسی موجود در برخی نواحی استان گلستان سبب ایجاد ساختار لانه‌زنبوری سست با دانسیته بسیار پایین در این مصالح شده و این ویژگی، عامل بروز چالش‌های ژئوتکنیکی و سازه‌ای بسیاری بوده است. راهکارهای متعددی برای  بهسازی این قبیل خاک‌های مسئله‌دار وجود دارد که یکی از این راهکارها، استفاده از شمع‌های پیچشی پره‌ای مخروطی می‌باشد. در این تحقیق، از مدل‌سازی با ابعاد واقعی شمع‌های پیچشی مخروطی جهت بررسی کارایی این شمع‌ها استفاده شده است. در این راستا، هشت شمع پیچشی پره‌ای مخروطی سه پره با طول 6/2 متر و نسبت فاصله پره‌ها به قطر 3، تحت تنش های نصب 200-400-450 کیلوپاسکال در دو شرایط اجرای خشک و مرطوب برای بهبود عملکرد خاک لسی واقع در سایت داشلی برون واقع در استان گلستان اجرا شده است. در اجرا به روش خشک، شمع‌ها تحت سه تنش، نصب و بارگذاری گردیده و در اجرا به روش مرطوب ابتدا اقدام به تعیین فشار تزریق بهینه آب نموده و سپس عملکرد شمع‌ها مورد بررسی قرار گرفته است.  نتایج حاصل نشان می‌دهد که با افزایش تنش نصب، ظرفیت شمع‌های مخروطی در دو حالت خشک و مرطوب افزایش یافته و فشار تزریق پارامتر موثر بر روی رفتار این گونه شمع‌ها می‌باشد که عدم استفاده از فشار تزریق بهینه آب باعث کاهش 45 درصدی ظرفیت باربری شمع می شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The Effect of Water Injection Pressure on the Performance of Conical Helical Piles

نویسندگان [English]

  • Somaye Akbarnezhad 1
  • Navid Ganjian 1
  • Abolfazl Eslami 2
  • Mohamad Meysam Fadaee 1
1 Department of Civil Engineering, Science and Research Branch, Islamic Azad University
2 Department of Civil and Environmental Engineering, Amirkabir University of Technology
چکیده [English]

Loess deposits exist in some areas of Golestan Province, and the type of sedimentation of these deposits has caused a loose honeycomb structure with low density, which is the cause of geotechnical and structural challenges. There are several solutions for improving such problematic soils, one of which is the use of conical helical piles. In this study, eight three-blade conical helical piles with a length of 6.2 m and a blade-to-diameter ratio of 3, under installation stresses of 200-400-450 kPa in two dry and wet conditions, were used to improve the performance of loess soil located at the Dashli Borun site in Golestan Province. In the dry method, the piles were installed and loaded under three stresses, and in the wet method, the optimal water injection pressure was first determined, and then the performance of the piles was examined. The results show that with increasing installation stress, the capacity of conical piles in both dry and wet states increases, and the injection pressure is an effective parameter on the behavior of these types of piles, and non-use of optimal water injection pressure causes a 45% reduction in the pile's bearing capacity.

کلیدواژه‌ها [English]

  • Loess Soil
  • Conical Helical Pile
  • Installation Stress
  • Injection Pressure
  • Wet Implementation
[1] J. Wu, N. Yang, P. Li, C. Yang, Influence of moisture content and dry density on the compressibility of disturbed loess: A case study in Yan’an City, China, Sustainability, 15(7) (2023) 6212.
[2] A. Zivari, M. Siavoshnia, H. Rezaei, Effect of lime-rice husk ash on geotechnical properties of loess soil in Golestan province, Iran, International Journal of Geo-Engineering, 14(1) (2023) 20.
[3] A. Karimi, H. Khademi, M. Kehl, A. Jalalian, Distribution, lithology and provenance of peridesert loess deposits in northeastern Iran, Geoderma, 148(3-4) (2009) 241-250.
[4] I. Jefferson, D. Evstatiev, D. Karastanev, The treatment of collapsible loess soils using cement materials, in:  GeoCongress 2008: Geosustainability and geohazard mitigation, 2008, pp. 662-669.
[5] A. Abdolrezayi, N. Khayat, Comparative three-dimensional finite element analysis of piled raft foundations, Computational Engineering and Physical Modeling, 4(1) (2021) 19-36.
[6] S. Clemence, A. Lutenegger, Industry survey of state of practice for helical piles and tiebacks, DFI Journal-The Journal of the Deep Foundations Institute, 9(1) (2015) 21-41.
[7] M. Mahmoudi, E. Mohammad, M. Jalali Moghadam, Mechanical Soil Restraints from Design to Implementation, Amirkabir University 2016 (In Persian).
[8] S. Clemence, A. Ghaly, A review of model-scale laboratory investigations of helical anchors and screw piles, in:  1st International geotechnical symposium on helical foundations, 2013, pp. 25-45.
[9] M. Arabameri, A. Eslami, Microstructure and strength effect on bearing capacity of helical piles installed in golestan loess, International Journal of Civil Engineering, 19(8) (2021) 923-940.
[10] M. Arabameri, A. Eslami, Wet and dry installation effects on the capacity of helical piles in loess deposits, International Journal of Geotechnical Engineering, 16(4) (2022) 486-498.
[11] K. Shao, Q. Su, J. Liu, K. Liu, Z. Xiong, T. Wang, Optimization of inter-helix spacing for helical piles in sand, Journal of Rock Mechanics and Geotechnical Engineering, 14(3) (2022) 936-952.
[12] R. Hoseinpour, M. Keramati, C. de Hollanda Cavalcanti Tsuha, Effect of the addition of a second helix on the helical pile performance in sand, International Journal of Civil Engineering, 22(2) (2024) 289-302.
[13] A. Rahimi, A. Eslami, J.S. McCartney, Hyperbolic load–displacement analysis of helical and expanded piles: database approach, Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, 177(5) (2024) 448-467.
[14] M. Esmailzade, A. Eslami, J.S. McCartney, Comparison of frustum confining vessel (FCV) and full-scale testing for helical and expanded piles geotechnical performance, Marine Georesources & Geotechnology, 43(2) (2025) 284-304.
[15] H. Luo, F. Wu, J. Chang, J. Xu, Microstructural constraints on geotechnical properties of Malan Loess: a case study from Zhaojiaan landslide in Shaanxi province, China, Engineering Geology, 236 (2018) 60-69.
[16] H. Yan, J. Ma, J. Niu, Z. Xie, Q. Wang, W. Zhu, X. Yang, Comprehensive Analysis of Collapsible Loess, in:  E3S Web of Conferences, EDP Sciences, 2023, pp. 03007.
[17] H.R. Asgari, A. Rashno, C. Bairramkomaki, A. Boali, E. Rashno, Investigation study of soil salinity mapping using Landsat data (case study: Dashli borun, Golestan province),  (2020).
[18] D.-. ASTM, Standard test methods for liquid limit, plastic limit, and plasticity index of soils, D4318-17,  (2017).
[19] A. International, Standard test method for deep foundations under static axial compressive load, ASTM International, 2013.
[20] H.A. Perko, Helical piles: a practical guide to design and installation, John Wiley & Sons, 2009.
[21] K.M. Tappenden, Predicting the axial capacity of screw piles installed in Western Canadian soils,  (2007).
[22] K. Terzaghi, Discussion of the progress report of the committee on the bearing value of pile foundations, in:  Proceedings, ASCE, 1942, pp. 311-323.