بررسی مولفه های نفوذ پذیری و دبی جریان ورودی روی شکاف هیدرولیکی در محیط متخلخل اشباع

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده مهندسی عمران ، دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران، ایران

چکیده

- در این مقاله یک مدل هیدرومکانیکی برای بررسی محیط متخلخل اشباع دارای ناپیوستگی ارائه شده است. برای مدل سازی ناپیوستگی از مدل رفتاری ترک چسبنده استفاده شده است و جریان در داخل ناپیوستگی لایه ای در نظر گرفته شده است. معادله مومنتوم کل و معادله بقای جرم در ترکیب با فرم کلی قانون دارسی برای فاز سیال نوشته شده است. برای حل معادلات به روش عددی از روش استاندارد اجزا محدود برای پاره سازی معادلات در حوزه مکان و از روش نیومارک برای پاره سازی معادلات در حوزه زمان استفاده شده است. در نهایت اثر نفوذپذیری محیط و نرخ تزریق روی گسترش شکافت هیدرولیکی بررسی شده است.مشاهده شده است که با افزایش نفوذپذیری رشد ترک آرام‌تر و با افزایش نرخ تزریق رشد ترک سریعتر می‌شود. با 3/3 برابر شدن نفوذپذیری، بازشدگی دهانه ترک 8/43 درصد پس از یک ثانیه و 4/29 در صد پس از 6 ثانیه کاهش می یابد. طول ترک نیز 20 درصد پس از یک ثانیه و 9/15 در صد پس از 6 ثانیه کاهش می یابد. با 2،3 و 4 برابر شدن نرخ تزریق، طول ترک پس از 6 ثانیه به ترتیب 5/30، 9/55، 3/76 درصد افزایش می یابد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Study of permeability coefficient and inflow rate effects on hydraulic fracturing in saturated porous media

نویسندگان [English]

  • O. R. Barani
  • F. Dastjerdy
  • F. Kalantary
Faculty of Civil Engineering, K.N.Toosi University of Technology, Tehran, Iran
چکیده [English]

In this paper, a finite element model is developed for the fully hydro-mechanical analysis of hydraulic fracturing in saturated porous media. The model is derived within the framework of generalized Biot theory. The fracture propagation is governed by a cohesive fracture model. The flow within the fracture zone is modeled considering the lubrication equation. In order to describe the fracture in the saturated porous media, momentum equation and mass balance equation with Darcy law are employed. The standard Galerkin method and Newmark scheme are used for discretization in space and time, respectively. Finally, the effects of permeability and rate of injection on the hydraulic fracture propagation are studied. It is observed that an increase in permeability leads to slower crack propagation. In addition, increasing flow rate leads to a faster crack propagation. When permeability increases by 3.3 times, CMOD and crack length decreases by 43.8% and 20%, ,respectively after 1 second and decreases by 29.4% and 15.9%, respectively after 6 seconds. In addition, when flow rate increases by 2, 3, and 4 times, the crack length increases by 30.5%, 55.9%, and 76.3% after one second.

کلیدواژه‌ها [English]

  • Hydraulic Fracturing
  • Saturated porous media
  • Hydro-mechanical coupling
  • cohesive zone model
  • finite element method
[1] A. M., Raaen; E., Skomedal; H., Kjorholt; P., Markestad; D., Okland; Stress Determination from Hydraulic Fracturing Tests: The System Stiffness Approach,International Journal of Rock Mechanics and Mining Sciences, Vol. 38, pp. 529‑541, 2006.
[2] J., Noorishad; M. S., Ayatollahi; P. A., Witherspoon; A Finite-element Method for Coupled Stress and Fluid Flow Analysis in Fractured Rock Masses, International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, Vol. 19, pp. 185‑193, 1982.
[3] N., KLA; J. C., Small; Behavior of Joints and Interfaces Subjected to Water Pressure, Computers and Geotechnics, Vol. 20, pp. 71‑93, 1997.
[4] P., Papanastasiou; The Influence of Plasticity in Hydraulic Fracturing, International Journal of Fracture, Vol. 84, pp. 61‑79, 1997.
[5] T. J., Boone; A. R., Ingraffea; A numerical Procedure for Simulation of Hydraulically-driven Fracture Propagation in Poroelastic Media, International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 14, pp. 27‑47, 1990.
[6] L., Simoni; S., Secchi; Cohesive Fracture Mechanics for a Multi-phase Porous Medium, Engineering Computations, Vol. 20, pp. 675‑698, 2003.
[7] B. A., Schrefler; S., Secchi; L., Simoni; On Adaptive Refinement Techniques in Multi-field Problems Including Cohesive Fracture, Computer Methods in Applied Mechanics and Engineering, Vol. 195, pp.444‑461, 2006.
[8] S., Secchi; L., Simoni; B. A., Schrefler; Mesh Adaptation and Transfer Schemes for Discrete Fracture Propagation in Porous Materials, International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 31, pp.331‑345, 2007.
[9] J. M., Segura; I., Carol; Coupled HM Analysis Using Zero-thickness Interface Elements with Double Nodes-Part I: Theoretical Model, International Journal for Numerical and Analytical Methods in Geomechanics,Vol. 32, pp. 2083‑2101, 2008.
[10] O. R., Barani; A. R., Khoei; M., Mofid; Modeling of Cohesive Crack Growth in Partially Saturated Porous Media: A Study on the Permeability of Cohesive Fracture, International Journal of Fracture, Vol. 167, pp. 15‑31,2011.
[11] A. R., Khoei; O. R., Barani; M., Mofid; Modeling of Dynamic Cohesive Fracture Propagation in Porous Saturated Media, International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 35, pp.1160‑1184, 2011.
[12] O. R., Barani; A. R., Khoei; 3D Modeling of Cohesive Fracture Crack Growth in Partially Saturated Porous Media: A Parametric Study, Engineering Fracture Mechanics, Vol. 124-125, pp. 272‑286, 2014.
[13] R. W., Lewis; B. A., Schrefler; The Finite Element Method in the Static and Dynamic Deformation and Consolidation of Porous Media, New York, NY, John Wiley, 1998.
[14] S. H., Song; G. H., Paulino; W. G., Buttlar; A Bilinear Cohesive Zone Model Tailored for Fracture of Asphalt Concrete Considering Viscoelastic Bulk Material,Engineering Fracture Mechanics, Vol. l73, pp.2829‑2848, 2006.
[15] H. D., Zavattieri Espinosa; A Grain Level Model for the Study of Failure Initiation and Evolution in Polycrystalline Brittle Materials-Part I: Theory and Numerical Implementation, Mechanics of Matererials, pp. 333‑364, 2003.
[16] O., Ortiz; G. T., Camacho; Computational Modeling of Impact Damage in Brittle Materials, International Journal of Solids and Structures, pp. 2899‑938, 1996.
[17] P. A., Witherspoon; J. S. Y., Wang; K., Iwai; J. E., Gale; Validity of Cubic Low for Fluid Flow in a Deformable Rock Fracture, Water Resources Research, Vol. 16, pp.1016‑1024, 1980
[18] D. A., Spence; P., Sharp; Self-similar Solutions for Elasto-hydrodynamic Cavity Flow, Proceeding of the Royal Society of London, Vol. A 400, pp. 289‑313, 1985.