[1] A. M., Raaen; E., Skomedal; H., Kjorholt; P., Markestad; D., Okland; Stress Determination from Hydraulic Fracturing Tests: The System Stiffness Approach,International Journal of Rock Mechanics and Mining Sciences, Vol. 38, pp. 529‑541, 2006.
[2] J., Noorishad; M. S., Ayatollahi; P. A., Witherspoon; A Finite-element Method for Coupled Stress and Fluid Flow Analysis in Fractured Rock Masses, International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, Vol. 19, pp. 185‑193, 1982.
[3] N., KLA; J. C., Small; Behavior of Joints and Interfaces Subjected to Water Pressure, Computers and Geotechnics, Vol. 20, pp. 71‑93, 1997.
[4] P., Papanastasiou; The Influence of Plasticity in Hydraulic Fracturing, International Journal of Fracture, Vol. 84, pp. 61‑79, 1997.
[5] T. J., Boone; A. R., Ingraffea; A numerical Procedure for Simulation of Hydraulically-driven Fracture Propagation in Poroelastic Media, International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 14, pp. 27‑47, 1990.
[6] L., Simoni; S., Secchi; Cohesive Fracture Mechanics for a Multi-phase Porous Medium, Engineering Computations, Vol. 20, pp. 675‑698, 2003.
[7] B. A., Schrefler; S., Secchi; L., Simoni; On Adaptive Refinement Techniques in Multi-field Problems Including Cohesive Fracture, Computer Methods in Applied Mechanics and Engineering, Vol. 195, pp.444‑461, 2006.
[8] S., Secchi; L., Simoni; B. A., Schrefler; Mesh Adaptation and Transfer Schemes for Discrete Fracture Propagation in Porous Materials, International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 31, pp.331‑345, 2007.
[9] J. M., Segura; I., Carol; Coupled HM Analysis Using Zero-thickness Interface Elements with Double Nodes-Part I: Theoretical Model, International Journal for Numerical and Analytical Methods in Geomechanics,Vol. 32, pp. 2083‑2101, 2008.
[10] O. R., Barani; A. R., Khoei; M., Mofid; Modeling of Cohesive Crack Growth in Partially Saturated Porous Media: A Study on the Permeability of Cohesive Fracture, International Journal of Fracture, Vol. 167, pp. 15‑31,2011.
[11] A. R., Khoei; O. R., Barani; M., Mofid; Modeling of Dynamic Cohesive Fracture Propagation in Porous Saturated Media, International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 35, pp.1160‑1184, 2011.
[12] O. R., Barani; A. R., Khoei; 3D Modeling of Cohesive Fracture Crack Growth in Partially Saturated Porous Media: A Parametric Study, Engineering Fracture Mechanics, Vol. 124-125, pp. 272‑286, 2014.
[13] R. W., Lewis; B. A., Schrefler; The Finite Element Method in the Static and Dynamic Deformation and Consolidation of Porous Media, New York, NY, John Wiley, 1998.
[14] S. H., Song; G. H., Paulino; W. G., Buttlar; A Bilinear Cohesive Zone Model Tailored for Fracture of Asphalt Concrete Considering Viscoelastic Bulk Material,Engineering Fracture Mechanics, Vol. l73, pp.2829‑2848, 2006.
[15] H. D., Zavattieri Espinosa; A Grain Level Model for the Study of Failure Initiation and Evolution in Polycrystalline Brittle Materials-Part I: Theory and Numerical Implementation, Mechanics of Matererials, pp. 333‑364, 2003.
[16] O., Ortiz; G. T., Camacho; Computational Modeling of Impact Damage in Brittle Materials, International Journal of Solids and Structures, pp. 2899‑938, 1996.
[17] P. A., Witherspoon; J. S. Y., Wang; K., Iwai; J. E., Gale; Validity of Cubic Low for Fluid Flow in a Deformable Rock Fracture, Water Resources Research, Vol. 16, pp.1016‑1024, 1980
[18] D. A., Spence; P., Sharp; Self-similar Solutions for Elasto-hydrodynamic Cavity Flow, Proceeding of the Royal Society of London, Vol. A 400, pp. 289‑313, 1985.