[1] M. Parhizkari, A. Saberi Vaezaneh, M. Naderi, The effect of penetration-reducing materials on concrete permeability and strength with "cylindrical chamber" and "Twist-off" tests, Amirkabir Journal of Civil Engineering, 55(1) (2023) 19-40.
[2] J. Esmaeili, K. Andalibi, Investigation of the effects of nano-silica on the properties of concrete in comparison with micro-silica, International Journal of Nano Dimension, 3(4) (2013) 321-328.
[3] J. Esmaeili, V. Romouzi, J. Kasaei, K. Andalibi, An investigation of durability and the mechanical properties of ultra-high performance concrete (UHPC) modified with economical graphene oxide nano-sheets, Journal of Building Engineering, 80 (2023) 107908.
[4] M. Jafari Nadoushan, A. Ramezanianpor, Performance of alkali-activated slag and pumice mortars against chloride ions penetration in the Persian Gulf, Amirkabir Journal of Civil Engineering, 55(3) (2023) 531-554.
[5] S.H. Ghasemzadeh Mosavinejad, A. Darvishalinezhad, Durability of geopolymeric mortars based on recommended slag and kaolin percentages containing polymer, Amirkabir Journal of Civil Engineering, 55(11) (2024) 2243-2262.
[6] F.K. Maleki, M.K. Nasution, M.S. Gok, V.A. Maleki, An experimental investigation on mechanical properties of Fe2O3 microparticles reinforced polypropylene, journal of materials research and technology, 16 (2022) 229-237.
[6] M. Hoseinzadeh, R. Pilafkan, V.A. Maleki, Size-dependent linear and nonlinear vibration of functionally graded CNT reinforced imperfect microplates submerged in fluid medium, Ocean Engineering, 268 (2023) 113257.
[8] P. Vahidi Pashaki, M. Pouya, V.A. Maleki, High-speed cryogenic machining of the carbon nanotube reinforced nanocomposites: Finite element analysis and simulation, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 232(11) (2018) 1927-1936.
[9] M. Tabish, M.M. Zaheer, A. Baqi, Effect of nano-silica on mechanical, microstructural and durability properties of cement-based materials: A review, Journal of Building Engineering, 65 (2023) 10565767.
[10] K. Abu el‐Hassan, I.Y. Hakeem, M. Amin, B.A. Tayeh, A.M. Zeyad, I.S. Agwa, Y. Elsakhawy, Effects of nano titanium and nano silica on high‐strength concrete properties incorporating heavyweight aggregate, Structural Concrete 36 (2023) 14-26.
[11] F. Althoey, O. Zaid, R. Martínez-García, F. Alsharari, M. Ahmed, M.M. Arbili, Impact of Nano-silica on the hydration, strength, durability, and microstructural properties of concrete: A state-of-the-art review, Case Studies in Construction Materials, (2023) e01997.
[12] A.S. Dahlan, Impact of nanotechnology on high performance cement and concrete, Journal of molecular structure, 1223 (2021) 128896.
[13] A. Jagadisha, K.B. Rao, G. Nayak, M. Kamath, Influence of nano-silica on the microstructural and mechanical properties of high-performance concrete of containing EAF aggregate and processed quarry dust, Construction and Building Materials, 304 (2021) 124392.
[14] P. Zhang, D. Sha, Q. Li, S. Zhao, Y. Ling, Effect of nano silica particles on impact resistance and durability of concrete containing coal fly ash, Nanomaterials, 11(5) (2021) 1296.
[15] P. Zhang, H. Zhang, G. Cui, X. Yue, J. Guo, D. Hui, Effect of steel fiber on impact resistance and durability of concrete containing nano-SiO2, Nanotechnology Reviews, 10(1) (2021) 504-517.
[16] C. Li, G. Li, D. Chen, K. Gao, Y. Mao, S. Fan, L. Tang, H. Jia, Influencing mechanism of nano-Al2O3 on concrete performance based on multi-scale experiments, Construction and Building Materials, 384 (2023) 131402.
[17] M. Naderi, A. Saberi Vaezaneh, m. parhizkari, The effect of different temperature cycles on permeability and surface resistance of concretes containing permeability-reducing materials, Amirkabir Journal of Civil Engineering, 55(9) (2023) 1845-1862.
[18] A. Tangtakabi, M.H. Ramesht, A. Golsoorat Pahlaviani, T. Pourrostam, Optimum Use of Microsilica in Reducing Corrosion Reinforcing Steel of Marine Concrete Structures, Amirkabir Journal of Civil Engineering, 54(8) (2022) 2953-2968.
[19] S. Khosravi, M.A. Goudarzi, Seismic risk assessment of on-ground concrete cylindrical water tanks, Innovative Infrastructure Solutions, 8(1) (2023) 68.
[20] Komasi, M., khosravi, S., chobkar, H., Laboratory study for optimal mixing scheme of pervious concrete containing additive of microsilica fume based on maximum compressive strength and permeability, Journal of Structural and Construction Engineering, 7(4) (2021) 42-61.
[21] M.R. Mohammadizadeh, F. Esfandnia, Prediction of shear strength of deep beams of the reinforced concrete using weighted least squares support vector machine method, Amirkabir Journal of Civil Engineering, 53(9) (2021) 3867-3882.
[22] A. Hakimi Khansar, J. Parsa, A. Hoseinzadeh dalir, J. Shiri, Simulation of soil stress in earth dams using artificial intelligence models and determination of effective features, Amirkabir Journal of Civil Engineering, 54(1) (2022) 247-262.
[23] F. Salmasi, F. Nahrain, A. Taheri aghdam, Prediction of discharge coefficients for broad-crested weirs using expert systems, Amirkabir Journal of Civil Engineering, 54(12) (2023) 4435-4458.
[24] M. Adamu, A.B. Çolak, Y.E. Ibrahim, S.I. Haruna, M.F. Hamza, Prediction of mechanical properties of rubberized concrete incorporating fly ash and nano silica by artificial neural network technique, Axioms, 12(1) (2023) 81.
[25] J. Abellán García, J. Fernandez Gomez, N. Torres Castellanos, Properties prediction of environmentally friendly ultra-high-performance concrete using artificial neural networks, European Journal of Environmental and Civil Engineering, 26(6) (2022) 2319-2343.
[26] Y. Zhang, Z. Gao, X. Wang, Q. Liu, Predicting the pore-pressure and temperature of fire-loaded concrete by a hybrid neural network, International Journal of Computational Methods, 19(08) (2022) 2142011.
[27] A.N. Beskopylny, S.A. Stel’makh, E.M. Shcherban’, L.R. Mailyan, B. Meskhi, I. Razveeva, A. Chernil’nik, N. Beskopylny, Concrete strength prediction using machine learning methods CatBoost, k-Nearest Neighbors, Support Vector Regression, Applied Sciences, 12(21) (2022) 10864.
[28] M. miri, H. Beheshti nezhad, M. Jafari, Experimental Investigation on Mechanical Properties of Concrete containing Nano Wollastonite and Modeling with GMDH-type Neural Networks, Amirkabir Journal of Civil Engineering, 46(2) (2015) 143-156.
[29] N. Ukrainczyk, V. Ukrainczyk, A neural network method for analysing concrete durability, Magazine of Concrete Research, 60(7) (2008) 475-486.
[30] A. Rashno, M. Adlparvar, M. Izadinia, Investigating the engineering properties of fiber-reinforced ultra-high performance self-compacting concrete and predicting its rheological properties using a hybrid neural network and RBF, Amirkabir Journal of Civil Engineering, 55(5) (2023) 1103-1120.
[31] M. Nataraja, L. Das, Concrete mix proportioning as per IS 10262: 2009–Comparison with IS 10262: 1982 and ACI 211.1-91, The Indian Concrete Journal, 35 (2010) 64-70.
[32] B. En, 12390-3, Testing hardened concrete-Part 3: Compressive strength of test specimens, British Standards Institution, (2003).
[33] C. Astm, 496/C 496M, Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens,” ASTM International, West Conshohocken, PA (2004).
[34] B. Standard, Testing concrete: Method for determination of water absorption, BSI 12, 1998.
[35] V. Rathi, C. Modhera, An overview on the influence of nano materials on properties of concrete, International Journal of Innovative Research in Science Engineering and Technology, 3(2) (2014) 36-59.
[36] J.A. Abdalla, B.S. Thomas, R.A. Hawileh, K.S.A. Kabeer, Influence of nanomaterials on the water absorption and chloride penetration of cement-based concrete, Materials Today: Proceedings, 65 (2022) 2066-2069.
[37] M. Ashok, A. Parande, P. Jayabalan, Strength and durability study on cement mortar containing nano materials, Advances in nano research, 5(2) (2017) 99.
[38] J.R. Koza, Genetic programming: on the programming of computers by means of natural selection, MIT press, 1992.
[39] P. Chopra, R.K. Sharma, M. Kumar, Prediction of compressive strength of concrete using artificial neural network and genetic programming, Advances in Materials Science and Engineering, 2016 (2016) 36-56.
[40] W.B. Langdon, R. Poli, Foundations of genetic programming, Springer Science & Business Media, 2013.
[41] H.A. Shah, M.L. Nehdi, M.I. Khan, U. Akmal, H. Alabduljabbar, A. Mohamed, M. Sheraz, Predicting Compressive and Splitting Tensile Strengths of Silica Fume Concrete Using M5P Model Tree Algorithm, Materials, 15(15) (2022) 5436.
[42] A.A. Shahmansouri, H.A. Bengar, S. Ghanbari, Compressive strength prediction of eco-efficient GGBS-based geopolymer concrete using GEP method, Journal of Building Engineering, 31 (2020) 101326.