ارزیابی زمان سفر و قابلیت اطمینان زمان سفر درک شده در حمل و نقل همگانی در تهران (مطالعه موردی خط 1 اتوبوس‌های تندروی تهران)

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده عمران و محیط زیست، دانشگاه تربیت مدرس، تهران، ایران

چکیده

ازدحام در حمل و نقل همگانی به خصوص در ساعات اوج در تهران بسیار مشاهده می‌شود. سفر در یک وسیله نقلیه مزدحم حمل و نقل همگانی طبیعتا منجر به عدم راحتی مسافران می‌شود. از طرفی موضوع زمان سفر همواره دغدغه مهم برنامه ریزان حمل و نقل بوده است. با توجه به اینکه گذر زمان موضوعی ذهنی است بنابراین در یک بازه زمانی به خصوص ممکن است همه مسافران یک وسیله گذر زمان را به یک اندازه تجربه نکنند. مطالعات گذشته نیز بر این موضوع صحه گذاشته اند. بدین ترتیب مفهوم زمان سفر درک شده با توجه به ازدحام و سطوح مختلف آن در وسیله حمل و نقل همگانی مطرح شده است. فردی که در یک اتوبوس با تراکم مسافر کم نشسته است، گذر زمان را نسبت به فردی که در اتوبوسی با تراکم مسافر زیاد، ایستاده است، متفاوت تجربه می‌کند. علاوه بر مفهوم زمان سفر، موضوع قابلیت اطمینان زمان سفر نیز مطرح است. بررسی زمان سفر درک شده، منجر به طرح مفهومی نسبتا جدید به نام قابلیت اطمینان زمان سفر درک شده نیز می‌شود. در این تحقیق به ضرورت بررسی این دو موضوع در سیستم حمل و نقل همگانی تهران پرداخته شده است. برای نمونه نیز با استفاده از داده‌های AFC و AVL در ساعت اوج صبح یک روز کاری در شرایط عادی (قبل از کرونا و در آذر 98) در خط 1 اتوبوس‌های تندروی تهران به این موضوع پرداخته شده است. نتایج نشان می‌دهند که هم زمان سفر درک شده و هم قابلیت اطمینان آن هر دو تفاوت محسوسی با شکل اسمی خود دارند. در برخی موارد زمان سفر  درک شده بیش از 50 دقیقه با حالت اسمی تفاوت دارد. در مواردی نیز قابلیت اطمینان درک‌شده بیش از دو برابر حالت اسمی است. همچنین  این تفاوت، لزوم بازنگری در نحوه تحلیل سیستم‌های حمل و نقل همگانی را با درنظر گرفتن زمان سفر درک شده نشان می‌دهد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluating Perceived Travel Time and Travel Time Reliability in the Transit System of Tehran (Case Study: The First BRT Line)

نویسندگان [English]

  • mostafa shafaati
  • Mahmoud Saffarzadeh
PHD Candidate., Department of Civil and Environment Engineering, Tarbiat Modares University, Tehran, Iran
چکیده [English]

Crowding in public transportation in Tehran is a convenient problem, especially in the pick hours. Transferring in a crowded transit vehicle makes passengers feel discomfort during their trips. Another important thing is the idea of time which is a subjective issue which means that passengers experience their travel times differently in a specific time interval. The literature has confirmed this issue, so the idea of “perceived travel time” has been introduced for many years. It implies that a passenger travelling by a congested public transport vehicle feels like the time is passing slower compared to those who are traveling in uncongested vehicles. The idea of perceived travel time has led some researchers to the concept of “perceived travel time reliability”. This paper is aimed at demonstrating the necessity of paying attention to these two concepts for the public transport system in Tehran. For this purpose, the first line of the BRT system of Tehran has been considered as a case study. Using Automated Fare Collection (AFC) and Automatic Vehicle Location (AVL) data in a pick hour of a work day back in the autumn of 2019 and before spreading the coronavirus, the perceived travel time and perceived travel time reliability are calculated. The results show that there is a significant difference between perceived and nominal. The differences show the necessity of reconsidering the analysis of public transport systems using the nominal travel time and travel time reliability. In fact, it seems that using the perceived will be more helpful and telling as well.

کلیدواژه‌ها [English]

  • Public transportation
  • perceived travel time
  • experienced service reliability gap
[1] E. Jenelius, Public transport experienced service reliability: Integrating travel time and travel conditions, Transportation Research Part A: Policy and Practice, 117 (2018) 275-291.
[2] M. Wardman, G. Whelan, Twenty years of rail crowding valuation studies: evidence and lessons from British experience, Transport reviews, 31(3) (2011) 379-398.
[3] Z. Li, D.A. Hensher, Crowding and public transport: A review of willingness to pay evidence and its relevance in project appraisal, Transport Policy, 18(6) (2011) 880-887.
[4] L. Haywood, M. Koning, G. Monchambert, Crowding in public transport: Who cares and why?, Transportation Research Part A: Policy and Practice, 100 (2017) 215-227.
[5] A. Sumalee, Z. Tan, W.H. Lam, Dynamic stochastic transit assignment with explicit seat allocation model, Transportation Research Part B: Methodological, 43(8-9) (2009) 895-912.
[6] F. Leurent, V. Benezech, F. Combes, A stochastic model of passenger generalized time along a transit line, Procedia-Social and Behavioral Sciences, 54 (2012) 785-797.
[7] M. Abkowitz, H. Slavin, R. Waksman, L.S. Englisher, N.H. Wilson, Transit service reliability, United States. Urban Mass Transportation Administration, 1978.
[8] E.I. Diab, M.G. Badami, A.M. El-Geneidy, Bus transit service reliability and improvement strategies: Integrating the perspectives of passengers and transit agencies in North America, Transport Reviews, 35(3) (2015) 292-328.
[9] D.L. Uniman, J. Attanucci, R.G. Mishalani, N.H. Wilson, Service reliability measurement using automated fare card data: application to the London underground, Transportation research record, 2143(1) (2010) 92-99.
[10] S.T. Jin, H. Kong, R. Wu, D.Z. Sui, Ridesourcing, the sharing economy, and the future of cities, Cities, 76 (2018) 96-104.
[11] M. Alkubati, N.A. Khalifa, H.A. Al-barakani, An overview of public transport reliability studies using a bibliometric analysis, Ain Shams engineering journal, 14(3) (2023) 101908.
[12] V. Pimenta, A. Quilliot, H. Toussaint, D. Vigo, Models and algorithms for reliability-oriented dial-a-ride with autonomous electric vehicles, European Journal of Operational Research, 257(2) (2017) 601-613.
[13] R. Kucharski, A. Fielbaum, J. Alonso-Mora, O. Cats, If you are late, everyone is late: late passenger arrival and ride-pooling systems' performance, Transportmetrica A: Transport Science, 17(4) (2021) 1077-1100.
[14] J. Soza-Parra, S. Raveau, J.C. Muñoz, O. Cats, The underlying effect of public transport reliability on users’ satisfaction, Transportation Research Part A: Policy and Practice, 126 (2019) 83-93.
[15] L.G. Alcorn, A. Karner, Integrating formal and informal transit into one hybrid passenger transport system in Lagos, Nigeria, Transportation, 48(3) (2021) 1361-1377.
[16] N. van Oort, Incorporating service reliability in public transport design and performance requirements: International survey results and recommendations, Research in Transportation Economics, 48 (2014) 92-100.
[17] M. Dixit, T. Brands, N. van Oort, O. Cats, S. Hoogendoorn, Passenger travel time reliability for multimodal public transport journeys, Transportation Research Record, 2673(2) (2019) 149-160.
[18] M. Sadrani, A. Tirachini, C. Antoniou, Optimization of service frequency and vehicle size for automated bus systems with crowding externalities and travel time stochasticity, Transportation Research Part C: Emerging Technologies, 143 (2022) 103793.
[19] C. French, M. O'Mahony, Using Automatic Vehicle Location System Data to Assess Impacts of Weather on Bus Journey Times for Different Bus Route Types, in:  2021 IEEE International Intelligent Transportation Systems Conference (ITSC), IEEE, 2021, pp. 2137-2144.
[20] J. Liu, P.M. Schonfeld, Y. Yin, Q. Peng, Effects of link capacity reductions on the reliability of an urban rail transit network, Journal of Advanced Transportation, 2020 (2020) 1-15.
[21] E. Hussain, A. Bhaskar, E. Chung, Transit OD matrix estimation using smartcard data: Recent developments and future research challenges, Transportation Research Part C: Emerging Technologies, 125 (2021) 103044.