ارزیابی روش ترکیبی دکانولوشن – الگوریتم ژنتیک در استخراج نمودار زمان-مساحت

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی عمران، واحد اراک، دانشگاه آزاد اسلامی، اراک، ایران

2 گروه مهندسی عمران، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران

3 گروه مهندسی عمران، واحد اسلامشهر، دانشگاه آزاد اسلامی، اسلامشهر، ایران

چکیده

رواناب را می‌توان به صورت ساده، حاصل رفتار حوضه در برابر رخداد بارش باران دانست. تحقیقات مختلفی به منظور استحصال روش مناسب در تعیین رفتار و تعیین دقیق‌‌ترین پاسخ از حوضه صورت پذیرفته است. در اکثر این تحقیقات، مدل‌‌های مورد استفاده، از جمله مدل‌‌های مبتنی بر موج سینماتیک، نیاز به داده‌‌های ورودی با جزییات زیاد همچون مشخصات پوشش، مقدار شیب، رطوبت پیشین و نفوذپذیری خاک در حوضه دارد. لذا در این تحقیق با هدف تسهیل در استخراج پاسخ هیدرولوژیک حوضه، یک مدل استخراج نمودار زمان-مساحت به روش بهینه‌‌سازی با بهره گیری از روش دکانولوشن و الگوریتم ژنتیک ارایه شد و نتایج آن در حوضه‌‌های تئوریک و واقعی مورد ارزیابی قرار گرفت. در مدل این تحقیق مجموعه رخداد‌‌های بارش و هیدروگراف مشاهداتی متناظر در قالب ماتریس به عنوان ورودی مدل فراخوانی شده سپس با اجرای دکانولوشن و بهره‌گیری از الگوریتم ژنتیک، مجموعه نمودارهای زمان-مساحت متناظر حاصل شد. نتایج نشان داد که دقت مدل این تحقیق در برآورد پاسخ یک حوضه تئوریک فرضی، 99 درصد بوده در حالی که روش مستقیم برابر 74 درصد بوده است. دقت مدل در برآورد پاسخ حوضه هندسی وی-شکل و حوضه واقعی والنات گالچ به مقدار میانگین 99 درصد رسید. از این رو با توجه به کارایی مدل معرفی شده این تحقیق در تعیین نمودار زمان-مساحت حوضه وی-شکل، پیش بینی می‌گردد می‌تواند در سایر حوضه‌‌ها مورد استفاده قرار گیرد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation of Combined Method of Deconvolution- Genetic Algorithm in Extracting Time-Area Histogram

نویسندگان [English]

  • Mohammad Mohammadi Hashemi 1
  • Bahram Saghafian 2
  • Mahmoud Zakeri Niri 3
  • Mohsen Najarchi 1
1 Ph.D. candidate, Department of Civil Engineering, Arak Branch, Islamic Azad University, Arak, Iran
2 Professor. Department of Civil Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
3 Associate professor. Department of Civil Engineering, Islamshahr Branch, Islamic Azad University, Islamshahr, Iran
چکیده [English]

Runoff production is due to watershed response to rainfall events. Various research has been performed to accurately determine the watershed response. In most response models, as in kinematic wave-based models, require detailed input data such as cover characteristics, slope, initial moisture, and soil infiltration properties. In this study, a time-area histogram extraction technique was presented via genetic algorithm optimization and deconvolution methods and results were evaluated in theoretical and real watersheds. In the model presented, a set of rainfall-runoff events in matrix form were called as inputs while the corresponding time-area diagrams were extracted. The results showed that the accuracy of the model in estimating the response of a theoretical watershed was 99%, while similar accuracy in the direct approach was 74%. The accuracy of the model in estimating the response of the V-shaped geometric watershed and the real Walnut Gulch watershed reached an average of 99%. Therefore, the model introduced in this research is effective in determining the time-area diagram of the V-shaped watershed and may be used in other basins.

کلیدواژه‌ها [English]

  • Time-area
  • Genetic algorithm
  • Optimization
  • rainfall-runoff
  • Watershed
[1] V. Chow, D. Maidment, L. Mays, Applied hydrology McGraw-Hill International editions, New York, USA,  (1988).
[2] A. Alizadeh, Principles of applied hydrology, Mashhad: Emam Reza University,  (2008). (in persian).
[3] F.N. Madden, K.R. Godfrey, M.J. Chappell, R. Hovorka, R.A. Bates, A comparison of six deconvolution techniques, Journal of pharmacokinetics and biopharmaceutics, 24 (1996) 283-299.
[4] H. Saba, M. Kamalian, I. Raeisizadeh, Determining impending slip of slop and optimized embankment operation volume of earth dams using a combination of neural networks and genetic algorithms, Amirkabir Journal of Civil Engineering, 50(4) (2018) 233-234. (in persian).
[5] F. Masoumi, S.N. Bashi-Azghadi, A. Afshar, Application of Achieve-Based Genetic Algorithm for Consequence Management of Contaminant Entering in Water Distribution Networks, Amirkabir Journal of Civil Engineering, 53(8) (2021) 3593-3604. (in persian).
[6] S. Sadeghi, J. Samani, H. Samani, Optimal Design of Storm Sewer Network Based on Risk Analysis by Combining Genetic Algorithm and SWMM Model, Amirkabir Journal of Civil Engineering, 54(5) (2022) 1903-1924. (in persian).
[7] S.-H. Dong, Genetic algorithm based parameter estimation of Nash model, Water resources management, 22 (2008) 525-533.
[8] J. Drisya, D. Sathish Kumar, Automated calibration of a two-dimensional overland flow model by estimating Manning's roughness coefficient using genetic algorithm, Journal of Hydroinformatics, 20(2) (2018) 440-456.
[9] S. Farzin, H. Noori, H. Karami, Developing the performance of modern methods using multi-objective optimization in urban runoff control, Iran-Water Resources Research, 14(3) (2018) 45-58. (in persian).
[10] H. Nouri, A. Ildoromi, M. Sepehri, M. Artimani, Comparing Three Main Methods of Artificial Intelligence in Flood Estimation in Yalphan Catchment, Geography and Environmental Planning, 29(4) (2019) 35-50. (in persian).
[11] A.M. Melesse, W.D. Graham, J.D. Jordan, Spatially distributed watershed mapping and modeling: GIS-based storm runoff response and hydrograph analysis: Part 2, Journal of Spatial Hydrology, 3(2) (2003) 1-28.
[12] B. Saghafian, A. Shokouhi, A corrected time-area technique for one-dimensional flow, International Journal of Civil Engineering, 4(1) (2006) 34-41.
[13] M. Zakeri Niri, B. Saghafian, S. Golian, T. Moramarco, A. Shamsai, Derivation of travel time based on diffusive wave approximation for the time-area hydrograph simulation, Journal of Hydrologic Engineering, 17(1) (2012) 85-91.
[14] T. Sabzevari, S. Noroozpour, M. Pishvaei, Effects of geometry on runoff time characteristics and time-area histogram of hillslopes, Journal of Hydrology, 531 (2015) 638-648.
[15] S. Sadeghi, R. Mostafazadeh, A. Sadoddin, Changeability of simulated hydrograph from a steep watershed resulted from applying Clark’s IUH and different time–area histograms, Environmental Earth Sciences, 74 (2015) 3629-3643.
[16] Y. Her, C. Heatwole, HYSTAR Sediment Model: Distributed Two‐Dimensional Simulation of Watershed Erosion and Sediment Transport Using Time‐Area Routing, JAWRA Journal of the American Water Resources Association, 52(2) (2016) 376-396.
[17] B. Saghafian, A.M. Van Lieshout, H.M. Rajaei, Distributed catchment simulation using a raster GIS, International Journal of Applied Earth Observation and Geoinformation, 2(3-4) (2000) 199-203.
[18] J. Chabokpour, Operation of the non-linear Muskingum model in the prediction of the pollution breakthrough curves through the river reaches, Amirkabir Journal of Civil Engineering, 54(1) (2022) 21-34. (in persian).
[19] M. Mohammadi Hashemi, B. Saghafian, M. Zakeri Niri, M. Najarchi, Applicability of Rainfall–Runoff Models in Two Simplified Watersheds, Iranian Journal of Science and Technology, Transactions of Civil Engineering,  (2021) 1-12.
[20] S.K. Singh, Identifying representative parameters of IUH, Journal of irrigation and drainage engineering, 133(6) (2007) 602-608.
[21] S.K. Singh, Optimal instantaneous unit hydrograph from multistorm data, Journal of irrigation and drainage engineering, 132(3) (2006) 298-302.
[22] Y. Xiong, C.S. Melching, Comparison of kinematic-wave and nonlinear reservoir routing of urban watershed runoff, Journal of Hydrologic Engineering, 10(1) (2005) 39-49.
[23] J. Liang, C.S. Melching, Experimental evaluation of the effect of storm movement on peak discharge, International Journal of Sediment Research, 30(2) (2015) 167-177.
[24] D.E. Overton, M.E. Meadows, Stormwater modeling, Elsevier, 2013.
[25] A.D. Feldman, Hydrologic modeling system HEC-HMS: technical reference manual, US Army Corps of Engineers, Hydrologic Engineering Center, 2000.
[26] USDA, United States Department of Agriculture, in, Agricultural Research Service, 2007.
[27] B. Zahraee, S.M. Hoseini, Genetic Algorithm and Engineering Optimization, Gutenberg publication, 2014.