برآورد مولفه استحکام تاب‌آوری سازه‌های بلند مرتبه دارای ساختار مقاوم قاب خمشی محیطی دسته شده با استفاده از نمودار‌های شکنندگی

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده فنی و مهندسی، دانشگاه خوارزمی، تهران، ایران

چکیده

این پژوهش در برگیرنده نگرش تحلیلی بر موضوع آسیب‌پذیری سازه‌های دارای اسکلت مقاوم متشکل از سلول‌های چندگانه قاب خمشی بر اساس رویکرد تاب‌آوری لرزه‌ای است. بدین ترتیب، دو سازه 24 و 48 طبقه با اسکلت مقاوم قاب خمشی محیطی دسته شده شامل 9 سلول صلب یکپارچه، بر پایه مباحث ششم و دهم مقررات ملی ساختمان و ضوابط ویرایش چهارم استاندارد 2800 طراحی شده‌اند. نتایج این پژوهش بر اساس تحلیل‌های دینامیکی فزاینده (IDA) و آنالیز شکنندگی تحت رکوردهای سه مولفه‌ای حوزه نزدیک با انواع اثرات جهت‌داری بدست آمده و ارزیابی شده است. نمودارهای شکنندگی سازه‌های مطالعاتی نیز مطابق با ضوابط FEMA برای شش سطح عملکرد کرانه رفتار الاستیک (PL)، استفاده بی‌وقفه (IO)، کنترل خرابی (DC)، ایمنی جانی (LS)، آستانه فروریزش (CP) و ناپایداری احتمالی دینامیکی (GI) پیاده‌سازی گردیده‌اند. سپس با تعیین ضرایب آسیب بر اساس دستورالعمل HAZUS 2005 و به‌کارگیری فرمولاسیون پیشنهادی تابع خسارت در گزارش MCEER-09-0009 ، شاخص نیرومندی تاب‌آوری لرزه‌ای سازه‌های مطالعاتی محاسبه گردید. بر طبق بررسی نتایج تحلیل‌های دینامیکی غیرخطی، ملاحظه شد که سازه‌های قاب خمشی محیطی دسته شده دارای ایمنی به نسبت مناسبی در برابر ایجاد وضعیت فروریزش تحت رکوردهای نیرومند حوزه نزدیک حاوی پالس سرعت می‌باشند. همچنین، بر پایه ارزیابی مقادیر احتمالاتی محاسبه شده برای رخداد حالات حدی نیز دریافت شد که سازه‌های مطالعاتی 24 و 48 طبقه قاب خمشی محیطی دسته شده با نمود جامع‌تر رفتار غیرخطی هندسی، دچار روند تدریجی زوال مقاومت و کاهش سختی می‌گردند. مطابق با پردازش نمودارهای شکنندگی ملاحظه شد که به ‌کارگیری ساختار مقاوم قاب خمشی محیطی دسته شده در ساختمان‌‌های بلند مرتبه می‌تواند قابلیت بالای پایداری دینامیکی را در مقابل روند تصاعدی گسترش خسارت ایجاد نماید. بر اساس نتایج سنجش تاب‌آوری لرزه‌ای سازه‌ها، مولفه استحکام سازه‌های 24 و 48 طبقه قاب خمشی به ترتیب برابر با 6 /83و84/8 درصد بدست آمد. همچنین، از نتایج حاصله برداشت گردید که سازه بلند مرتبه 48 طبقه دچار افت مقاومت و کارایی کمتری پس از رخداد زلزله می‌شود. 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation of the Robustness of Tall Buildings with Bundled Tube Resistant Skeleton using Fragility Curves

نویسندگان [English]

  • Mahyar Roshani
  • A. Meshkat-Dini
  • Ali Massumi
M.Sc. Graduate
چکیده [English]

This research assesses the seismic resilience of structures with a lateral load-resisting system including moment frames and internal simple frames using statistical methods and probabilistic functions. For this purpose, two structures of 24 and 48 stories with bundled tube resistant system were considered. The structural system of the studied models consists of nine integrated rigid cells. The studied bundled tube structures have been designed based on the sixth and tenth issues of the Iranian National Building Code (INBC) and the fourth edition of the Iranian Seismic Code (Standard No. 2800).The seismic behavior of the studied bundled tube structural systems is investigated in this paper by performing incremental dynamic analyses (IDA) and seismic fragility assessments under near-field ground motions with various directivity effects. The fragility curves of the studied structures have been plotted according to the FEMA provisions to calculate the probability of the resistant skeleton exceeding six seismic performance levels, namely the post-linear (PL), the immediate occupancy (IO), the damage control (DC), the life safety (LS), the collapse prevention (CP) and the probabilistic global instability (GI). Then, by determining the damage coefficients according to the HAZUS 2005 guidelines and applying the proposed formulation of the loss function by the MCEER-09-0009 report, the seismic resilience indexes of the studied structures were obtained.Based on the obtained results of the conducted nonlinear dynamic analyses, it was concluded that the 24 and 48-story studied bundled tube structures have a relatively sufficient safety margin against the probable collapse mode under near-field records containing velocity pulses. Moreover, the evaluation of the probabilistic values of occurrence of the various limit states for the studied structures shows that the bundled tube structural system can control the gradual process of stiffness deterioration and strength degradation with a more comprehensive formation of the geometric nonlinear behavior.The results of the performed fragility analyses indicate that the application of bundled tube resistant skeleton in high-rise buildings can provide a high capability of dynamic stability against the process of damage expansion. The robustness indexes of the 24 and 48-story studied bundled tube structures were also obtained as 83.6% and 84.8%, respectively. Based on the seismic resilience calculations, it was found that the 48-story studied structure loses a lower amount of strength and efficiency after strong earthquake tremors.

کلیدواژه‌ها [English]

  • High-Rise Buildings
  • Bundled Tube Structure
  • Seismic Resilience
  • Fragility Curve
  • Incremental Dynamic Analysis
[1] B. Asgarian, A. Sadrinezhad & P. Alanjari, Seismic performance evaluation of steel moment resisting frames through incremental dynamic analysis, Constructional Steel Research, 66(2) (2010) 178-190.
[2] J. Kim & Y.H. Lee, Progressive collapse resisting capacity of tube-type structures, The Structural Design of Tall and Special Buildings, 19(7) (2010) 761-777.
[3] R. Vahdani, M. Gerami & M. Razi, Seismic vulnerability assessment of steel moment-resisting frames based on local damage, Earthquake and Tsunami, 11(5) (2017).
[4] A.C. Aydin, A. Ardalani, M. Maali & M. Kiliç, Numeric modelling of innovative semi-rigid connections under cyclic loading, Steel Construction, 14(1) (2021) 22-34.
[5] T. Ma & L. Xu, Story-based stability of multistory steel semi-braced and unbraced frames with semirigid connections, Structural Engineering, 147(1) (2021).
[6] D. Vamvatsikos & M. Fragiadakis, Incremental dynamic analysis for estimating seismic performance sensitivity and uncertainty, Earthquake Engineering and Structural Dynamics, 39(2) (2010) 141-163.
[7] D. Vamvatsikos & C.A. Cornell, Applied incremental dynamic analysis, Earthquake Spectra, 20(2) (2004) 523-553.
[8] D. Vamvatsikos & C.A. Cornell, Direct estimation of seismic demand and capacity of multi-degree of freedom systems through incremental dynamic analysis of single degree of freedom approximation, Structural Engineering, 131(4) (2005) 589-599.
[9] M. Hajikazemi, B. Mohebi & M. Montazeri-Pour, Analysis of steel special moment frames including damaged column subjected to far and near-field ground motions, Australian Journal of Structural Engineering, 21(3) (2020) 193-207.
[10] L. Macedo & J.M. Castro, Collapse performance assessment of steel moment frames designed to Eurocode 8, Engineering Failure Analysis, 126 (2021).
[11] M.R. Akhoondi & F. Behnamfar, Seismic fragility curves of steel structures including soil-structure interaction and variation of soil parameters, Soil Dynamics and Earthquake Engineering, 143 (2021).
[12] Z. Huang, L. Cai, Y. Pandey, Y. Tao & W. Telone, Hysteresis effect on earthquake risk assessment of moment resisting frame structures, Engineering Structures, 242 (2021).
[13] S. Ahlehagh & S.R. Mirghaderi, Decoupling the strength and drift criteria in steel moment-resisting frames, The Structural Design of Tall and Special Buildings, 29(17) (2020).
[14] M. Bruneau, S.E. Chang & R.T. Eguchi, A framework to quantitatively assess and enhance the seismic resilience of communities, Earthquake Spectra, 19(4) (2003) 733-752.
[15] S. Gerasimidis, N.E. Khorasani, M. Garlock, P. Pantidis & J. Glassman, Resilience of tall steel moment resisting frame buildings with multi-hazard post-event fire, Constructional Steel Research, 139 (2017) 202-219.
[16] C. Liu & D. Fang, Robustness analysis of vertical resistance to progressive collapse of diagrid structures in tall buildings, The Structural Design of Tall and Special Buildings, 29(13) (2020).
[17] Iranian National Building Code. (2014). Steel Structures. Issue 10, Tehran, Iran (in Persian).
[18] Iranian Code of Practice for Seismic Resistant Design of Buildings. Standard No. 2800, 4th edition, Building and Housing Research Center (BHRC), Tehran, Iran, 2014 (in Persion).
[19] M. Roshani, Study on effect of vertical irregularity on nonlinear behavior of high-rise bundled tube frames through dynamic stability criteria, MSc. Thesis, Kharazmi University, Tehran, Iran, 2021 (in Persian).
[20] CSI, Analysis Reference Manual for SAP2000. (2010). Berkeley, California, USA.
[21] FEMA 440A. (2009). Effects of strength and stiffness degradation on seismic response. Federal Energy Management Agency (FEMA), Redwood City, California.
[22] ASCE/SEI 41-17. (2017). Seismic evaluation and retrofit of existing buildings. American Society of Civil Engineers, Reston, Virginia.
[23] Iranian National Building Code. (2014). Design loads for buildings. Issue 6, Tehran, Iran (in Persian).
[24] F. Petrone, N. Abrahamson, D. McCallen & M. Miah, Validation of (not-historical) large event near-fault ground motion simulations for use in civil engineering applications, Earthquake Engineering and Structural Dynamics, 50(1) (2021) 116-134.
[25] Pacific Earthquake Engineering Research Center (PEER). Ground Motion Database, University of California Berkeley, USA.
[26] M. Kohrangi, D. Vamvatsikos & P. Bazzurro, Pulse-like versus non-pulse-like ground motion records: Spectral shape comparisons and record selection strategies, Earthquake Engineering and Structural Dynamics, 48(1) (2019) 46-64.
[27] CSI, User Guide PERFORM 3D. (2011). Nonlinear Analysis and Performance Assessment for 3D Structures. Berkeley, California, USA.
[28] D. Lallemant, A. Kiremidjian & H. Burton, Statistical procedures for developing earthquake damage fragility curves. Earthquake Engineering and Structural Dynamics, 44(9) (2015) 1373-1389.
[29] FEMA 356. Prestandard and commentary for the seismic rehabilitation of buildings. Federal Energy Management Agency (FEMA), Reston, Virginia, 2000.
[30] G.P. Cimellaro, C. Fumo, A.M. Reinhorn & M. Bruneau, Quantification of Disaster Resilience of Health Care Facilities. Technical Report MCEER-09-0009, University of Buffalo, New York, 2009.
[31] Multi-Hazard Loss Estimation Methodology (HAZUS), Technical Manual, Federal Emergency Management Agency & Department of Homeland Security, Washington, D.C., 2005.
[32] G.P. Cimellaro, A.M. Reinhorn & M. Bruneau, Framework for analytical quantification of disaster resilience. Engineering Structures, 32(11) (2010) 3639-3649.