اثرات اندرکنش سازه– خاک- سازه بر پاسخ لرزه‏ای سازه‌های بلندمرتبه مجاور مجهز به میراگر جرمی تنظیم‌شده بهینه

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده مهندسی عمران، دانشگاه زنجان، زنجان، ایران

2 دانشکده مهندسی عمران، دانشگاه زنجان، زنجان، ایران،

چکیده

میراگر جرمی تنظیم‌شده یکی از ساده‌ترین و درعین‌حال پرکاربردترین ابزار کنترل سازه‌‌ها است. عواملی چون مشخصات خاک زیر سازه و نیز وجود سازه‌‌ی مجاور می‌تواند بر نحوه‌ی عملکرد این میراگر تأثیرگذار باشد. این مطالعه به بررسی اثرات استفاده از میراگر جرمی‌تنظیم‌شده بر پاسخ لرزه ‏ای ساختما‏ن‏ های قاب خمشی فولادی 20 طبقه با پایه ثابت و بستر انعطاف‌‌پذیر با دو نسبت ابعادی متفاوت و با در نظر گرفتن اثرات همسایگی دو سازه تحت عنوان اندرکنش سازه–خاک–سازه می‌پردازد. برای در نظر گرفتن این اندرکنش، ماتریس سختی کاهش ‏یافته سیستم پی-خاک-پی، از تحلیل مدل کرنش مسطحه محیط خاک در آباکوس به دست آمده و با استفاده از مجموعه‌ای از فنرها و المان جدید گسترش‌یافته در اپن‌سیس (OpenSEES) به مدل‌های دو‌بعدی از قاب انتهایی سازه‌ها اعمال می‌گردد. به منظور بهینه‎سازی پارامترهای مربوط به میراگر جرمی تنظیم‌شده، از الگوریتم ازدحام ذرات استفاده شده است. میانگین نتایج به دست آمده از تحلیل تاریخچه زمانی تحت اثر ده رکورد زلزله مقیاس شده حوزه دور نشان می‌دهد که استفاده از میراگر جرمی تنظیم‌شده با پارامترهای بهینه در سازه‏ها‌ی 20 طبقه هم در حالت پایه ثابت و هم با در نظر گرفتن اندرکنش سازه-خاک-سازه می ‏تواند پاسخ سازه ‏ها را کاهش دهد. با این وجود، در نظر گرفتن اندرکنش سازه- خاک- سازه سبب تغییر پاسخ‏ های مربوط به سازه ‏های مجهز به میراگر شده؛ به گونه‏ ای که این تغییرات در سازه با نسبت ابعادی بیش‏تر (لاغرتر) افزایشی است. همچنین به منظور تعیین مشخصات میراگرهای جرمی در سازه‌‌های بلندمرتبه با پرویودهای ارتعاشی نزدیک به هم بهتر است اثرات اندرکنش سازه خاک سازه مدنظر قرار گیرد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Structure–Soil–Structure Interaction effects on Seismic Response of Adjacent High-Rise Structures Equipped with Optimized Tuned Mass Damper

نویسندگان [English]

  • Amirhosein Fatollahpour 1
  • Ehsan Tafakori 1
  • Seyyed Asghar Arjmandi 2
1 Msc. graduated of structural engineering/ University of Zanjan
2 Civil Engineering Group, Engineering Department, University of Zanjan, Zanjan, Iran.
چکیده [English]

Tuned Mass Damper (TMD) is amongst the simplest and, the most usable passive control tools, to improve the behavior of various structures. However, factors such as the characteristics of the soil beneath the structure and the presence of an adjacent structure could also affect the performance of that. This study investigates the effects of using a TMD in two 20-story steel moment frames with two different aspect ratios on the seismic response of them in fixed and flexible bases and considers the adjacency of two structures, known as Structure-Soil-Structure Interaction (SSSI). To apply the effects of SSSI, the reduced stiffness matrix of the foundation-soil-foundation system, considering as a plane strain problem, is obtained through analysis of a finite element model in Abaqus and is applied to the 2D models of the end frame of the structures using a set of springs and a newly developed element in OpenSEES. Furthermore, the particle swarm optimization (PSO) algorithm is used to optimize the design parameter of TMD. The average results obtained from time history analysis under ten far-field seismic records specifies that, exploiting a TMD with parameters optimized in a 20-story structure in both fixed-base cases and considering SSSI, can reduce the seismic responses in the form of the average of maximum drift and displacement. However, the SSSI effect can change the responses of structures equipped with dampers; in such a way that, in high-rise structures with a higher value of the height to dimension ratio (thinner structure), the response of structures is increased.

کلیدواژه‌ها [English]

  • Tuned Mass Damper (TMD)
  • Structure- Soil-Structure Interaction (SSSI)
  • substructure method
  • optimization
  • Particle Swarm Optimization (PSO)
  • structural passive control
[1] H. Frahm, Device for damping vibrations of bodies, in, Google Patents, 1911.
[2] J. Den Hartog, Mechanical Vibrations (2nd Edition., p. 436), in, New York: McGraw Hill, 1940.
[3] P.H. Wirsching, J.T. Yao, Safety design concepts for seismic structures, Computers & structures, 3(4) (1973) 809-826.
[4] P.H. Wirsching, G.W. Campbell, Minimal structural response under random excitation using the vibration absorber, Earthquake Engineering & Structural Dynamics, 2(4) (1973) 303-312.
[5] S. Ohno, Optimum tuning of the dynamic damper to control response of structures to earthquake ground motion, Proc. 6WCEE, (1977).
[6] H.C. Tsai, G.C. Lin, Optimum tuned‐mass dampers for minimizing steady‐state response of support‐excited and damped systems, Earthquake engineering & structural dynamics, 22(11) (1993) 957-973.
[7] M.N. Hadi, Y. Arfiadi, Optimum design of absorber for MDOF structures, Journal of Structural Engineering, 124(11) (1998) 1272-1280.
[8] A.Y. Leung, H. Zhang, C. Cheng, Y. Lee, Particle swarm optimization of TMD by non‐stationary base excitation during earthquake, Earthquake Engineering & Structural Dynamics, 37(9) (2008) 1223-1246.
[9] M. Domizio, H. Garrido, D. Ambrosini, Single and multiple TMD optimization to control seismic response of nonlinear structures, Engineering Structures, 252 (2022) 113667.
[10] Y. Bozorgnia, K.W. Campbell. The vertical-to-horizontal response spectral ratio and tentative procedures for developing simplified V/H and vertical design spectra, Journal of Earthquake Engineering, 8(02) (2004) 175-207.
[11] M. Trifunac, Scattering of plane SH waves by a semi‐cylindrical canyon, Earthquake Engineering & Structural Dynamics, 1(3) (1972) 267-281.
[12] M. Trifunac, Interaction of a shear wall with the soil for incident plane SH waves, Bulletin of the Seismological Society of America, 62(1) (1972) 63-83.
[13] E. Şafak, Wave-propagation formulation of seismic response of multistory buildings, Journal of Structural Engineering, 125(4) (1999) 426-437.
[14] E. Şafak, Local site effects and dynamic soil behavior, Soil dynamics and earthquake engineering, 21(5) (2001) 453-458.
[15] M.-Y. Liu, W.-L. Chiang, J.-H. Hwang, C.-R. Chu, Wind-induced vibration of high-rise building with tuned mass damper including soil–structure interaction, Journal of Wind Engineering and Industrial Aerodynamics, 96(6-7) (2008) 1092-1102.
[16] G. Bekdaş, S.M. Nigdeli. Estimating optimum parameters of tuned mass dampers using harmony search, Engineering Structures, 33(9) (2011) 2716-2723.
[17] W. Guo, H.N. Li, G.H. Liu, Z.W. Yu, A simplified optimization strategy for nonlinear tuned mass damper in structural vibration control, Asian Journal of Control, 14(4) (2012) 1059-1069.
[18] M. Mohebbi, A. Joghataie, Designing optimal tuned mass dampers for nonlinear frames by distributed genetic algorithms, The Structural Design of Tall and Special Buildings, 21(1) (2012) 57-76.
[19] A. Farshidianfar, S. Soheili, Ant colony optimization of tuned mass dampers for earthquake oscillations of high-rise structures including soil–structure interaction, Soil Dynamics and Earthquake Engineering, 51 (2013) 14-22.
[20] R. Jabary, S. Madabhushi, Structure-soil-structure interaction effects on structures retrofitted with tuned mass dampers, Soil Dynamics and Earthquake Engineering, 100 (2017) 301-315.
[21] J. Salvi, E. Rizzi, Optimum earthquake-tuned TMDs: seismic performance and new design concept of balance of split effective modal masses, Soil Dynamics and Earthquake Engineering, 101 (2017) 67-80.
[22] A. Abd-Elhamed, S. Mahmoud, Simulation analysis of TMD controlled building subjected to far-and near-fault records considering soil-structure interaction, Journal of Building Engineering, 26 (2019) 100930.
[23] A. Kaveh, S. Javadi, R.M. Moghanni, Optimal structural control of tall buildings using tuned mass dampers via chaotic optimization algorithm, in:  Structures, Elsevier, 2020, pp. 2704-2713.
[24] L. Wang, W. Shi, Y. Zhou, Adaptive-passive tuned mass damper for structural aseismic protection including soil–structure interaction, Soil Dynamics and Earthquake Engineering, 158 (2022) 107298.
[25] F. McKenna, OpenSees: a framework for earthquake engineering simulation, Computing in Science & Engineering, 13(4) (2011) 58-66.
[26] Abaqus, Dassault Systems Simulia Corporation, Providence, RI, USA. (www.3ds.com)
[27] A. Gupta, H. Krawinkler, Seismic demands for performance evaluation of steel moment resisting frame structures (SAC Task 5.4. 3), John A. Blume Earthquake Engineering Center, 1999.
[28] ISIR 2800, Seismic resistant design of buildings–Code of practice, Standards and Industrial Research of Iran, 2014 (in Persian).
[29] A. Fatollahpour, S.A. Arjmandi, E. Tafakori, Structure-Soil-Structure Interaction (SSSI) effects on seismic response of low-, mid-and high-rise steel moment resisting frame structures, Amirkabir Journal of Civil Engineering, 54(2) (2022) 605-630.
[30] R.J. Guyan, Reduction of stiffness and mass matrices, AIAA journal, 3(2) (1965) 380-380.
[31] B. Irons, Structural eigenvalue problems-elimination of unwanted variables, AIAA journal, 3(5) (1965) 961-962.
[32] M. Paz, Practical reduction of structural eigenproblems, Journal of Structural Engineering, 109(11) (1983) 2591-2599.
[33] M. Paz, W. Leigh, Integrated matrix analysis of structures: theory and computation, Springer Science & Business Media, 2012.
[34] A.Y.T. Leung, A simple dynamic substructure method, Earthquake engineering & structural dynamics, 16(6) (1988) 827-837.
[35] Y.K. Cheung, A.Y. Leung, Finite element methods in dynamics, Springer Science & Business Media, 1992.
[36] Matlab, Mathworks Inc, CA, USA. (https://www.mathworks.com/)
[37] H. Krawinkler, Importance of good nonlinear analysis, The structural design of tall and special buildings, 15(5) (2006) 515-531.
[38] D. Vamvatsikos, M. Fragiadakis, Incremental dynamic analysis for estimating seismic performance sensitivity and uncertainty, Earthquake engineering & structural dynamics, 39(2) (2010) 141-163.
[39] American Society of Civil Engineers (ASCE). Minimum design loads for buildings and other structures. ASCE/SEI 2016;7–10. Reston, VA.