حل مسائل سه ‌بعدی الاستیسیته با استفاده از روش بدون شبکه محلی توابع پایه متعادل ‌شده

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده مهندسی عمران، دانشگاه صنعتی اصفهان، اصفهان، ایران

چکیده

یک روش بدون شبکه محلی برای حل مسائل الاستواستاتیک با استفاده از توابع پایه متعادل‌ شده در فضای سه ‍بعدی همگن ارائه شده است. ارضای معادله دیفرانسیل مستقل از شرایط مرزی با استفاده از فرم ضعیف انتگرال وزنی در یک دامنه تصوری مکعبی دربرگیرنده ناحیه اصلی حل انجام می ­شود. پارامترهای مسئله قابلیت تفکیک به ضرب سه جزء متعامد را دارند که به واسطه آن، انتگرال‌های سه­ بعدی لازم به ترکیب انتگرال‌های یک ­بعدی کتابخانه ­ای تبدیل می ­شوند. این موضوع حذف انتگرال ­گیری عددی را به دنبال دارد. به منظور تقریب پاسخ از چند جمله ­ای ­های چبی­ شف نوع اول، و برای وزن­دهی از ترکیب توابع نمایی و چند جمله ­ای استفاده می­ شود. با صفر شدن توابع وزن در مرز ناحیه تصوری، انتگرال مرزی از بین می ­رود. در فرم بدون شبکه محلی، از تعدادی گره در شبکه منظم که محل تعریف درجات آزادی هستند، برای گسسته ­سازی دامنه استفاده می‌شود. زیرناحیه‌هایی تحت عنوان ابر، متشکل از نود و نه گره مجاور یکدیگر، تشکیل می­ شوند که به واسطه همپوشانی با یکدیگر ارتباط برقرار کرده و پیوستگی مولفه ­های جابه‌جایی و تنش در سرتاسر ناحیه حل گسترده خواهد شد. این مزیتی نسبت به روش­ های دارای پیوستگی مرتبه صفر به شمار می ­آید. مرتبه تقریب درون ابر معادل چهار است. شرایط مرزی در گامی جداگانه به صورت نقطه ­ای روی نقاط مرزی مستقل از گره ­ها اعمال می­ شود که توصیف مرز­های مختلف از جمله سطوح دارای انحنا را به سادگی و با دادن مختصات صحیح نقاط روی آن میسر می­ کند. با ارائه سه مثال عددی دارای هندسه­ های مختلف، توانایی روش در برآورد میادین جابه‌جایی و تنش بررسی می­ گردد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Solution of 3D elasticity problems using meshless local equilibrated basis functions

نویسندگان [English]

  • Danial Afifi
  • Nima Noormohammadi
  • Bijan Boroomand
Department of Civil Engineering, Isfahan University of Technology, Isfahan, Iran
چکیده [English]

A mesh-free method is presented for 3D elasto-static problems in homogenous media using Equilibrated Basic functions. The method treats satisfaction of the Partial Differential Equation independent of the boundary conditions, using a weak weighted residual integration over a cubic fictitious domain embedding the main domain. All 3D integrals break into the combination of 1D library integrals, resulting in the omission of the numerical integration. Chebyshev polynomials of the first kind are used to approximate the solution function, and exponential functions combined with polynomials are used as weight functions. The weights vanish over the boundaries of the cubic fictitious domain, removing the boundary integrals. The meshless method considers some nodes for the definition of the Degrees of Freedom throughout the domain. Each node corresponds to a local sub-domain called cloud, including 98 other nodes than the main central one. The overlap between adjacent clouds ensures the continuity of both the displacement as well as stress components, an advantage with respect to the  formulations. The approximation order within each cloud is 4. Boundary conditions are applied over a set of boundary points independent of the domain nodes, granting the method the ability of application for arbitrarily shaped domains without the drawback of irregularity in the nodal grid. The definition of curved boundary surfaces is easily done by inserting the coordinates of some boundary points located on them. Three numerical examples with various geometries and boundaries are presented to challenge the method. The results are compared with either the available exact solutions or the FEM.

کلیدواژه‌ها [English]

  • Elasticity
  • Three dimensional
  • Equilibrated basis functions
  • Meshless method
  • Weighted residual approach
[1] N. Noormohammadi, Solution of solid mechanics problems using equilibrated basis functions and mesh- free methods, Ph.D Thesis, Isfahan University of Technology, 2015. (In Persian)
[2] E. Kita, N. Kamiya, Trefftz method: an overview, Advances in Engineering software, 24(1-3) (1995) 312.
[3] V.D. Kupradze, M.A. Aleksidze, The method of functional equations for the approximate solution of certain boundary value problems, USSR Computational Mathematics and Mathematical Physics, 4(4) (1964) 82-126.
[4] C. Brebbia, The Boundary Element Method for Engineers, Pentech Press, London, Halstead Press, New York, in, 1980.
[5] B. Boroomand, S. Soghrati, B. Movahedian, Exponential basis functions in solution of static and time harmonic elastic problems in a meshless style, International Journal for Numerical Methods in Engineering, 81(8) (2010) 971-1018.
[6] A.R. Motamedi, B. Boroomand, N. Noormohammadi, A Trefftz based meshfree local method for bending analysis of arbitrarily shaped laminated composite and isotropic plates, Engineering Analysis with Boundary Elements, 143 (2022) 237-262.
[7] F. Mossaiby, M. Ghaderian, R. Rossi, Implementation of a generalized exponential basis functions method for linear and non‐linear problems, International Journal for Numerical Methods in Engineering, 105(3) (2016) 221-240.
[8] B. Boroomand, N. Noormohammadi, Weakly equilibrated basis functions for elasticity problems, Engineering Analysis with Boundary Elements, 37(12) (2013) 1712-1727.
[9] N. Noormohammadi, B. Boroomand, A boundary method using equilibrated basis functions for bending analysis of in-plane heterogeneous thick plates, Archive of Applied Mechanics, 91(1) (2021) 487-507.
[10] N. Noormohammadi, B. Boroomand, A fictitious domain method using equilibrated basis functions for harmonic and bi-harmonic problems in physics, Journal of Computational Physics, 272 (2014) 189-217.
[11] N. Noormohammadi, B. Boroomand, A domain decomposition approach using equilibrated basis functions: special reference to structural engineering problems with varying material properties, Iranian Journal of Science and Technology, Transactions of Civil Engineering, 45(2) (2021) 667-681.
[12] N. Noormohammadi, B. Boroomand, Construction of equilibrated singular basis functions without a priori knowledge of analytical singularity order, Computers & Mathematics with Applications, 73(7) (2017) 1611- 1626.
[13] N. Noormohammadi, B. Boroomand, Enrichment functions for weak singularities in 2D elastic problems with isotropic and orthotropic materials, Applied Mathematics and Computation, 350 (2019) 402-415.
[14] O. Bateniparvar, N. Noormohammadi, B. Boroomand, Singular functions for heterogeneous composites with cracks and notches; the use of equilibrated singular basis functions, Computers & Mathematics with Applications, 79(5) (2020) 1461-1482.
[15] M. Azizpooryan, N. Noormohammadi, B. Boroomand, Equilibrated Basis Functions for Static Analysis of In-plane Heterogeneous Laminated Composite Plates in Boundary and Meshfree Approaches, Iranian Journal of Science and Technology, Transactions of Mechanical Engineering, (2021) 1-28.
[16] L.B. Lucy, A numerical approach to the testing of the fission hypothesis, The astronomical journal, 82 (1977) 1013-1024.
[17] R.A. Gingold, J.J. Monaghan, Smoothed particle hydrodynamics: theory and application to non-spherical stars, Monthly notices of the royal astronomical society, 181(3) (1977) 375-389.
[18] W.K. Liu, S. Jun, S. Li, J. Adee, T. Belytschko, Reproducing kernel particle methods for structural dynamics, International Journal for Numerical Methods in Engineering, 38(10) (1995) 1655-1679.
[19] B. Nayroles, G. Touzot, P. Villon, Generalizing the finite element method: diffuse approximation and diffuse elements, Computational mechanics, 10(5) (1992) 307-318.
[20] T. Belytschko, Y.Y. Lu, L. Gu, Element‐free Galerkin methods, international journal for numerical methods in engineering, 37(2) (1994) 229-256.
[21] P. Krysl, T. Belytschko, The element free Galerkin method for dynamic propagation of arbitrary 3‐D cracks, International Journal for Numerical Methods in Engineering, 44(6) (1999) 767-800.
[22] E. Jaberzadeh, M. Azhari, B. Boroomand, Thermal buckling of functionally graded skew and trapezoidal plates with different boundary conditions using the element-free Galerkin method, European Journal of Mechanics-A/Solids, 42 (2013) 18-26.
[23] S.N. Atluri, T. Zhu, A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics, Computational mechanics, 22(2) (1998) 117-127.
[24] E. Oñate, S. Idelsohn, O. Zienkiewicz, R. Taylor, A finite point method in computational mechanics. Applications to convective transport and fluid flow, international journal for numerical methods in engineering, 39(22) (1996) 3839-3866.
[25] B. Boroomand, M. Najjar, E. Oñate, The generalized finite point method, Computational Mechanics, 44(2) (2009) 173-190.
[26] E. Soleimanifar, B. Boroomand, F. Mossaiby, A meshless method using local exponential basis functions with weak continuity up to a desired order, Computational Mechanics, 53(6) (2014) 1355-1374.
[27] A. Shojaei, B. Boroomand, F. Mossaiby, A simple meshless method for challenging engineering problems, Engineering Computations, (2015).