محاسبه پارامترهای میراگر جرمی تنظیم شونده و بررسی عملکرد آن بر روی پل یکپارچه چهار دهانه

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده مهندسی، دانشگاه فردوسی مشهد، مشهد، ایران

2 دانشکده مهندسی، دانشگاه بیرجند، بیرجند، ایران

چکیده

در این مقاله عملکرد سیستم‏ کنترل میراگر جرمی ‏تنظیم‏ شونده (TMD) در کاهش پاسخ ‏های لرزه ‏ای یک پل یکپارچه چهار دهانه مورد بررسی قرار می‏ گیرد. دو روش تحلیلی کلاسیک و یک روش بهینه‌سازی برای محاسبه پارامترهای این میراگر به کار گرفته می‌شود و تاثیر آن بر پاسخ لرزه‌ای پل بررسی می‏‏‌شود. در روش بهینه‌سازی، سه تابع هدف کمینه کردن بیشینه جا‏به ‏جایی و بیشینه شتاب گره میانی عرشه و نیز بیشینه برش پایه مورد استفاده قرار می‌گیرد. میراگر با پارامترهای محاسبه شده بر روی پل قرار گرفته و پل تحت چند زلزله بزرگ در جهت عرضی قرار می‏ گیرد. بهینه ‏سازی در برنامه MATLAB و تحلیل دینامیکی غیرخطی سازه در نرم‌افزار OpenSees برنامه‏ نویسی شده است. هدف از انجام این پژوهش مقایسه روش ‏های مختلف در به ‏دست آوردن پارامترهای میراگر و معرفی روشی است که میراگر با استفاده از آن روش عملکرد بهتری بر روی پل داشته باشد. نتایج عددی نشان می‏دهد استفاده از TMD در کاهش پاسخ‏ های لرزه ‏ای پل موثر بوده و انتخاب روش محاسبه این پارامترها بر عملکرد آن تاثیرگذار است. استفاده از روش بهینه‏ سازی به دلیل تعیین پارامترهای میراگر با توجه به مشخصات زلزله سبب کاهش بیشتر پاسخ‌های نیرویی و حرکتی پل می‌شود. همچنین انتخاب تابع هدف نیز در مقدار کاهش پاسخ ‏ها موثر است و بیشترین مقدار کاهش پاسخ، مربوط به پاسخ متناظر با تابع هدف می‏ باشد. برای پل مورد بررسی مقادیر بیشینه کاهش پاسخ جابه ‏جایی و شتاب گره میانی عرشه برابر 22/4 و 17/7 درصد و برای برش پایه 4/3 درصد می ‏باشد. بنابراین تابع هدف جابه‏ جایی بهترین تابع هدف معرفی می‏ گردد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Determination of Tuned Mass Damper Parameters and its performance in a Four-Span Integral Bridge

نویسندگان [English]

  • Seyyedeh Fatemeh Labbafi 1
  • Ahmad Shooshtari 1
  • Ehsan Mohtashami 2
1 Department of Civil Engineering, Ferdowsi University of Mashhad , Mashhad, Iran
2 Department of Civil Engineering, University of Birjand, Khorasan, Iran
چکیده [English]

In this paper, the performance of the Tuned Mass Damper (TMD) control system in seismic response reduction of a four-span integral bridge is investigated. Two classic analytical methods and one optimization method are then employed to calculate TMD parameters. Then, the effect of selecting each of the three methods for calculating TMD parameters on the seismic response of the bridge is studied. Three objective functions are considered for the optimization procedure in MATLAB. After calculating TMD parameters, nonlinear dynamic analysis of the bridge in a transverse direction is carried out in OpenSees. The purpose of this study is to compare different methods for obtaining damper parameters and to introduce a method that calculates damper parameters in such a way that the damper has a better performance on the bridge. Numerical results indicate the performance of the damper is affected by its parameters and selecting the objective function. It is recommended to use the optimization method to calculate the damper parameters with maximum lateral displacement of the deck midpoint objective function. Also, the results show that the reduction of the response is related to the response corresponding to the objective function. For the studied bridge, the maximum values of reduction of displacement and acceleration of the middle deck are equal to 22.4 and 17.7%, respectively, and for the base, shear is 4.3%. Therefore, the lateral displacement of the deck midpoint objective function is introduced as the best cost function.

کلیدواژه‌ها [English]

  • Tuned mass damper
  • Integral bridge
  • Optimization
  • optimum parameters of damper
  • Particle swarm optimization
[1] H. Frahm, Device for damping vibration bodies, US Patent No. 989/959, 1911.
[2] J.P. Den Hartog, Mechanical vibrations, McGraw-Hill, 1956.
[3] S. Ohno, Optimum tuning of the dynamic damper to control response of structures to earthquake ground motion, Proc. 6WCEE, 1977,  (1977).
[4] G.F.D. T. T. Soong Passive energy dissipation systems in structural engineering, John Wiley & Sons Chichester, 1997.
[5] G. Warburton, Optimum absorber parameters for various combinations of response and excitation parameters, Earthquake Engineering & Structural Dynamics, 10(3) (1982) 381-401.
[6] J.R. Sladek, R.E. Klingner, Effect of tuned-mass dampers on seismic response, Journal of Structural Engineering, 109(8) (1983) 2004-2009.
[7] C.-L. Lee, Y.-T. Chen, L.-L. Chung, Y.-P. Wang, Optimal design theories and applications of tuned mass dampers, Engineering structures, 28(1) (2006) 43-53.
[8] S. Bakre, R. Jangid, Optimum parameters of tuned mass damper for damped main system, Structural Control and Health Monitoring: The Official Journal of the International Association for Structural Control and Monitoring and of the European Association for the Control of Structures, 14(3) (2007) 448-470.
[9] S. Pourzeynali, S. Salimi, H.E. Kalesar, Robust multi-objective optimization design of TMD control device to reduce tall building responses against earthquake excitations using genetic algorithms, Scientia Iranica, 20(2) (2013) 207-221.
[10] L.F. Miguel, R.H. Lopez, A.J. Torii, L.F. Miguel, A.T. Beck, Robust design optimization of TMDs in vehicle–bridge coupled vibration problems, Engineering Structures, 126 (2016) 703-711.
[11] W. Shi, L. Wang, Z. Lu, Q. Zhang, Application of an artificial fish swarm algorithm in an optimum tuned mass damper design for a pedestrian bridge, Applied Sciences, 8(2) (2018) 175.
[12] Z. Chen, H. Fang, Z. Han, S. Sun, Influence of bridge-based designed TMD on running trains, Journal of Vibration and Control, 25(1) (2019) 182-193.
[13] W. Shi, L. Wang, Z. Lu, H. Wang, Experimental and numerical study on adaptive-passive variable mass tuned mass damper, Journal of Sound and Vibration, 452 (2019) 97-111.
[14] C. Wang, W. Shi, Optimal design and application of a multiple tuned mass damper system for an in-service footbridge, Sustainability, 11(10) (2019) 2801.
[15] F. Ferreira, L. Simões, Optimum design of a controlled cable-stayed footbridge subject to a running event using semiactive and passive mass dampers, Journal of performance of constructed facilities, 33(3) (2019) 04019025.
[16] X. Yin, G. Song, Y. Liu, Vibration suppression of wind/traffic/bridge coupled system using multiple pounding tuned mass dampers (MPTMD), Sensors, 19(5) (2019) 1133.
[17] A. Bathaei, M. Ramezani, A.K. Ghorbani-Tanha, Vibration control of the College Bridge using tuned mass dampers, Modares Civil Engineering journal, 16(20) (2017) 21-32.(in persion).
[18] F. Baiat, E. Daneshjoo, Performance Evaluation of Passive Tuned Mass Dampers For Reduction of Bridges Traffic Vibrations, Modares Civil Engineering journal, 16(4) (2016) 23-34. (in persion).
[19] A. akhlagh pasand, a. fatollah pour, S.M. Zahrai, Comparing performance of TMD and MTMD vertically distributed in height for multi-modal seismic control of tall buildings, Amirkabir Journal of Civil Engineering, 52(10) (2020) 2563-2582. (in persion).
[20] S. Soheili, H. Zoka, M. Abachizadeh, Tuned mass dampers for the drift reduction of structures with soil effects using ant colony optimization, Advances in Structural Engineering, 24(4) (2021) 771-783.
[21] T.T. Soong, G.F. Dargush, Passive energy dissipation systems in structural engineering, Wiley, 1997.
[22] F. Sadek, B. Mohraz, A.W. Taylor, R.M. Chung, A method of estimating the parameters of tuned mass dampers for seismic applications, Earthquake Engineering and Structural Dynamics, 26(6) (1997) 617-636.
[23] S. He, Q. Wu, J. Wen, J. Saunders, R. Paton, A particle swarm optimizer with passive congregation, Biosystems, 78(1) (2004) 135-147.
[24] M.R. Shayesteh Bilondi, H. Yazdani, M. Khatibinia, Seismic energy dissipation-based optimum design of tuned mass dampers, Structural and Multidisciplinary Optimization, 58(6) (2018) 2517-2531.
[25] E. Mohtashami, A. Shooshtari, A multimode adaptive pushover procedure for seismic assessment of integral bridges, Advances in Civil Engineering, 2013 (2013).
[26] T. Isaković, M. Fischinger, Higher modes in simplified inelastic seismic analysis of single column bent viaducts, Earthquake engineering & structural dynamics, 35(1) (2006) 95-114.
[27] A.S. Elnashai, L. Di Sarno, Fundamentals of earthquake engineering: from source to fragility, John Wiley & Sons, 2015.
[28] Z. Li, D. Li, Y. Lu, C. Tang, Analysis on vibration control of a large-span pedestrian suspension bridge based on a multiple tuned mass damper system, Noise & Vibration Worldwide, 50(2) (2019) 56-63.
[29] R. Kamgar, M. Khatibinia, Optimization criteria for design of tuned mass dampers including soil–structure interaction effect, Iran University of Science & Technology, 9(2) (2019) 213-232.