[1] R.J. Abrahart, L. See, Neural network vs. ARMA modelling: constructing benchmark case studies of river flow prediction. In GeoComputation’98. Proceedings of the Third International Conference on GeoComputation, University of Bristol, United Kingdom (1998) 17-19.
                                                                                                                [2] H. K. Cigizoglu, Estimation, forecasting and extrapolation of river flows by artificial neural networks. Hydrological Sciences Journal, 48(3) (2003) 349-361.
                                                                                                                [3] C.L. Wu, K.W. Chau, C.Fan, Prediction of rainfall time series using modular artificial neural networks coupled with data-preprocessing techniques. Journal of Hydrology, 389(1-2) (2010) 146-167.
                                                                                                                [4] W. Huang, B. Xu, A. Chan‐Hilton, Forecasting flows in Apalachicola River using neural networks. Hydrological processes, 18(13) (2004) 2545-2564.
                                                                                                                [5] R. Noori, A.R. Karbassi, A. Moghaddamnia, D. Han, M.H. Zokaei-Ashtiani, A.Farokhnia, M. Ghafari Gousheh, Assessment of input variables determination on the SVM model performance using PCA, Gamma test, and forward selection techniques for monthly stream flow prediction. Journal of Hydrology. 401(3-4) (2011) 177-189.
                                                                                                                [6] Z.M. Yaseen, A. El-Shafie, O. Jaafar, H.A. Afan, K.N. Sayl, Artificial intelligence based models for stream-flow forecasting: 2000–2015. Journal of Hydrology, 530 (2015) 829-844.
                                                                                                                [7] F. Azarpira, S. SHahabi, Evaluating the capability of hybrid data-driven approaches to forecast monthly streamflow using hydrometric and meteorological variables. Journal of Hydroinformatics. 23(6) (2021) 1165-1181.
                                                                                                                [8] M. Montaseri, S. Zamanzad Ghavidel, Streamflow Forecasting using soft computing techniques. Water and soil Journal. 28(2) (2014) 394-405. (In Persian)
                                                                                                                [9] B. Saghafian, S. Anvari, S. Morid, Effect of Southern Oscillation Index and spatially distributed climate data on improving the accuracy of Artificial Neural Network, Adaptive Neuro-Fuzzy Inference System and K-Nearest Neighbour streamflow forecasting models. Expert System. 30(4) (2013). 367-380.
                                                                                                                [10] A. Danandeh Mehr, An improved gene expression programming model for streamflow forecasting in intermittent streams. Journal of Hydrology. 563 (2018) 669-678.
                                                                                                                [11] R.M. Adnan, Z .Liang, K.S. Parmar, K. Soni, O. Kisi, Modeling monthly streamflow in mountainous basin by MARS, GMDH-NN and DENFIS using hydro climatic data. 
Neural Computing and Applications. 33(7) (2021). 2853-2871. 
                                                                                                                 [12] A. Bensoussan, N. Farhi, Uncertainties and risks in water resources management. The economics of sustainable development, (Chapter: Uncertainties and risks in water resources management), Publisher: Econom (2010) 163-79.
                                                                                                                [13] M. Dehghani, B. Saghafian, F. Nasiri Saleh, A. Farokhnia, R. Noori, Uncertainty analysis of streamflow drought forecast using artificial neural networks and Monte‐Carlo simulation, International Journal of Climatology, 34(4), (2014) 1169-80.
                                                                                                                [14] S. Anvari, J. Mousavi, S. Morid, A Multilevel Uncertainty-Based Approach for Optimal Irrigation Scheduling. Advances in Hydroinformatic. (2018) 359-372.  
                                                                                                                [15] S. Anvari, J.H. Kim, M. Moghaddasi, The role of meteorological and hydrological uncertainties in the performance of optimal water allocation approaches, Irrigation and Drainage, 68(2) (2019) 342-53.
                                                                                                                [16] M. Moghaddasi, S. Anvari, N. Akhondi, A trade-off analysis of adaptive and non-adaptive future optimized rule curves based on simulation algorithm and hedging rules. Theoretical and Applied Climatology, 148(1) (2022) 65-78.
                                                                                                                [17] M. Abbasi, A. Farokhnia, M. Bahreinimotlagh, R. Roozbahani, A Hybrid of Random Forest and Deep Auto-Encoder with Support Vector Re‐gression Methods for Accuracy improvement and uncertainty reduction of long-term streamflow prediction. Journal of Hydrology, 597 (2021) 125717.
                                                                                                                [18] S. Anvari, E. Rashedi, S. Lotfi, A Coupled Metaheuristic Algorithm and Artificial Intelligence for Long-Lead Stream Flow Forecasting. International Journal of Optimization in Civil Engineering, 12(1) (2022) 91-104.
                                                                                                                [19] R. Zamani, F. Ahmadi, F., Radmanesh Comparison of the Gene Expression Programming, Nonlinear Time Series and Artificial Neural Network in Estimating the River Daily Flow (Case Study: The Karun River), Journal of Water and Soil; 
28 (6) (2015) 1172-1182 (In Persian).
                                                                                                                 [20] Friedman, J.H. (1991). Multivariate Adaptive Regression Splines. The Annals of Statistics. 19: 1-67.
                                                                                                                [21] West, A.M., Evangelista, P.H., Jarnevich, C.S & Schulte, D. (2018). A tale of two wildfires: testing detection and prediction of invasive species distributions using models fit with topographic and spectral indices. Landscape Ecology. 33: 969-984.
                                                                                                                [22] Ferreira, C. (2001). Gene Expression Programming:  a new adaptive algorithm for Solving Problems. Complex Systems 13(2): 87–129.
                                                                                                                [23] Mollahasani, A., Alavi, A.H & Gandomi, A.H. (2011). Empirical modeling of plate load test moduli of soil via gene expression programming. Computers and Geotechnics. 38(2): 281-286.
                                                                                                                [24] Quinlan, J.R. (1992). Learning with continuous classes. 5th Australian joint conference on artificial intelligence. Vol 92.
                                                                                                                [25] Wang, Y. and Witten, I. H. (1996).  Induction of model trees for predicting continuous classes.
                                                                                                                [26] 
Mirhashemi, S.H., 
Panahi, M. and 
Zareei L (2020). Evaluation of M5P Algorithm for Estimation of Potential Evapotranspiration, Minimum and Maximum Temperature (Case study: Sari Weather Station). Journal of Meteorology and Atmospheric Sciences 
2(4):  287-295 (In Persian).
                                                                                                                 [26] Yi, H. S., Lee, B., Park, S., Kwak, K. C., & An, K. G. (2019). Prediction of short-term algal bloom using the M5P model-tree and extreme learning machine. Environmental Engineering Research, 24(3), 404-411.
                                                                                                                [27] Eckhardt K., Breuer L., Frede H.G. (2003). Parameter uncertainty and the significance of simulated land use change effects, Journal of Hydrology, 273: 164 -176.
                                                                                                                [28] Talebizadeh M, Morid S, Ayyoubzadeh SA, Ghasemzadeh M. Uncertainty analysis in sediment load modeling using ANN and SWAT model, Water Resour Manag 2010; 24(9): 1747-61.
                                                                                                                [29] Thomas, H.A & Fiering, M.B. (1962). Mathematical synthesis of streamflow sequence for the analysis of river basins simulations. In: Maass, A. et al. (Eds.), Design of Water Resources Systems. Harvard University.
                                                                                                                [30] Khoi, D. N., Thom, V. T., Quang, C. N. X., & Phi, H. L. (2017). Parameter uncertainty analysis for simulating streamflow in the upper Dong Nai river basin. La Houille Blanche, (1), 14-23.
                                                                                                                [31] Maheepala, S., & Perera, B. J. C. (1996). Monthly hydrologic data generation by disaggregation. Journal of hydrology, 178(1-4), 277-291.
                                                                                                                [32] McMahon TA, Adeloye A.J. (2005) Water resources yield. Water Resources Publications, Littleton.