[1] E. Seyedi Hosseininia, A.A. Mirghasemi, Numerical simulation of breakage of two-dimensional polygon- shaped particles using discrete element method, Powder Technol., 166(2) (2006) 100-112.
[2] R. Deluzarche, B. Cambou, Discrete numerical modelling of rockfill dams, International Journal for Numerical and Analytical Methods in Geomechanics, 30(11) (2006) 1075-1096.
[3] E.E. Alonso, M. Tapias, J. Gili, Scale effects in rockfill behaviour, Geotech. Lett., 2(3) (2012) 155-160.
[4] W. Zhou, G. Ma, X.-L. Chang, Y. Duan, Discrete modeling of rockfill materials considering the irregular shaped particles and their crushability, Eng. Computation, 32(4) (2015) 1104-1120.
[5] F. Zhu, J. Zhao, Interplays between particle shape and particle breakage in confined continuous crushing of granular media, Powder Technol., 378 (2021) 455-467.
[6] T. Qu, M. Wang, Y. Feng, Applicability of discrete element method with spherical and clumped particles for constitutive study of granular materials, J. Rock Mech. Geotech. Eng., 14(1) (2022) 240-251.
[7] B. Indraratna, D. Ionescu, H.D. Christie, Shear behavior of railway ballast based on large-scale triaxial tests, J. Geotech. Geoenviron., 124(5) (1998) 439-449.
[8] E. Frossard, W. Hu, C. Dano, P.Y. Hicher, Rockfill shear strength evaluation: a rational method based on size effects, Géotechnique, 62(5) (2012) 415-427.
[9] P.A. Cundall, O.D.L. Strack, A discrete numerical model for granular assemblies, Géotechnique, 29(1) (1979) 47-65.
[10] C. Thornton, K.K. Yin, M.J. Adams, Numerical simulation of the impact fracture and fragmentation of agglomerates, J. Phys. D Appl. Phys., 29(2) (1996) 424-435.
[11] M. Lu, G.R. McDowell, The importance of modelling ballast particle shape in the discrete element method, Granul. Matter, 9(1) (2007) 69.
[12] G.R. McDowell, W.L. Lim, A.C. Collop, R. Armitage, N.H. Thom, Comparison of ballast index tests for railway trackbeds, Proceedings of the Institution of Civil Engineers - Geotechnical Engineering, 157(3)(2004) 151-161.
[13] S. Roshankhah, R. Shafipour, A. Soroush, 2D Numerical Modeling of Soil Behavior under Drained Tri- axial loading with Discrete Element Method, Journal of Civil and Surveying Engineering, 45(1) (2011) 1- 8 (In persian).
[14] E. Seyedi Hosseininia, A.A. Mirghasemi, Effect of particle breakage on the behavior of simulated angular particle assemblies, China Part., 5(5) (2007) 328-336.
[15] A. Bagherzadeh-Khalkhali, A.A. Mirghasemi, S. Mohammadi, Micromechanics of breakage in sharp- edge particles using combined DEM and FEM, Particuology, 6(5) (2008) 347-361.
[16] M. Tapias, E.E. Alonso, J. Gili, A particle model for rockfill behaviour, Géotechnique, 65(12) (2015) 975-994.
[17] T. Zhang, C. Zhang, J. Zou, B. Wang, F. Song, W. Yang, DEM exploration of the effect of particle shape on particle breakage in granular assemblies, Comput. Geotech., 122 (2020) 103542.
[18] A. Sarabi, A. Mahboubi, Three-dimensional modeling of rockfill using DEM considering particle breakage, Sharif Journal of Civil Engineering, 36.2(2.1) (2020) 79-90 (In persian).
[19] N. Mahbubi Motlagh, A. Noorzad, Discrete Element Method Simulation of Dynamic Behavior of Granular Materials, Amirkabir Journal of Civil Engineering, 53(10) (2021) 13 (In persian).
[20] G. Kang, Y.-j. Ning, R. Liu, P.-w. Chen, S.-p. Pang, Simulation of force chains and particle breakage of granular material by numerical manifold method, Powder Technol., 390 (2021) 464-472.
[21] Y.P. Cheng, M.D. Bolton, Y. Nakata, Crushing and plastic deformation of soils simulated using DEM, Géotechnique, 54(2) (2004) 131-141.
[22] Y.P. Cheng, Y. Nakata, M.D. Bolton, Discrete element simulation of crushable soil, Géotechnique, 53(7) (2003) 633-641.
[23] O. Tsoungui, D. Vallet, J.-C. Charmet, Numerical model of crushing of grains inside two-dimensional granular materials, Powder Technol., 105(1) (1999) 190-198.
[24] S. Lobo-Guerrero, L.E. Vallejo, Crushing a weak granular material: experimental numerical analyses, Géotechnique, 55(3) (2005) 245-249.
[25] J.P. De Bono, G.R. McDowell, D. Wanatowski, DEM of triaxial tests on crushable cemented sand, Granul. Matter, 16(4) (2014) 563-572.
[26] J.P. De Bono, G.R. McDowell, DEM of triaxial tests on crushable sand, Granul. Matter, 16(4) (2014) 551-562.
[27] N. Zhang, A. Hedayat, S. Han, R. Yang, H.G. Bolaños Sosa, J.J. González Cárdenas, G.E. Salas Álvarez, Isotropic compression behavior of granular assembly with non-spherical particles by X-ray micro- computed tomography and discrete element modeling, J. Rock Mech. Geotech. Eng., 13(5) (2021) 972- 984.
[28] M. Takei, O. Kusakabe, T. Hayashi, Time-dependent behavior of crushable materials in one-dimensional compression tests, Soils Found., 41 (2001) 97-121.
[29] E. Liu, Breakage and deformation mechanisms of crushable granular materials, Comput. Geotech., 37(5) (2010) 723-730.
[30] B.-Y. Zhang, Y.-X. Jie, D.-Z. Kong, Particle size distribution and relative breakage for a cement ellipsoid aggregate, Comput. Geotech., 53 (2013) 31-39.
[31] G. Yang, X. Yan, S. Nimbalkar, J. Xu, Effect of Particle Shape and Confining Pressure on Breakage and Deformation of Artificial Rockfill, International Journal of Geosynthetics and Ground Engineering, 5(2) (2019) 15.
[32] W. Zheng, D.D. Tannant, Grain breakage criteria for discrete element models of sand crushing under one- dimensional compression, Comput. Geotech., 95 (2018) 231-239.
[33] J. De Bono, G.R. McDowell, Particle breakage criteria in discrete-element modelling, Géotechnique, 66(12) (2016) 1014-1027.
[34] D. Shi, L. Zheng, J. Xue, J. Sun, DEM modeling of particle breakage in silica sands under one-dimensional compression, Acta Mech. Solida Sin., 29 (2016) 78-94.
[35] G.-Y. Liu, W.-J. Xu, Q.-C. Sun, N. Govender, Study on the particle breakage of ballast based on a GPU accelerated discrete element method, Geosci. Front., 11(2) (2020) 461-471.
[36] R. De Frias Lopez, S. Larsson, J. Silfwerbrand, A discrete element material model including particle degradation suitable for rockfill embankments, Comput. Geotech., 115 (2019) 103166.
[37] Y. Wang, S. Shao, Z. Wang, Effect of particle breakage and shape on the mechanical behaviors of granular materials, Adv. Civil Eng., 2019 (2019) 7248427.
[38] W. Zhou, L. Yang, G. Ma, X. Chang, Z. Lai, K. Xu, DEM analysis of the size effects on the behavior of crushable granular materials, Granul. Matter, 18(3) (2016) 64.
[39] G.R. McDowell, H. Li, Discrete element modelling of scaled railway ballast under triaxial conditions, Granul. Matter, 18(3) (2016) 66.
[40] M.O. Ciantia, M. Arroyo, F. Calvetti, A. Gens, An approach to enhance efficiency of DEM modelling of soils with crushable grains, Géotechnique, 65(2) (2015) 91-110.
[41] G.R. McDowell, J.P. De Bono, On the micro mechanics of one-dimensional normal compression, Géotechnique, 63(11) (2013) 895-908.
[42] Itasca Counsalting Group. PFC ____Particle Flow Code, Ver. 5.0. Manual, in, 2015.
[43] R.D. Mindlin, H. Deresiewicz, Elastic Spheres in Contact Under Varying Oblique Forces, Trans. ASME, Appl. Mech. , 20 (1953) 327-344.
[44] G.-C. Cho, J. Dodds, J.C. Santamarina, Particle shape effects on packing density, stiffness, and strength: natural and crushed sands, J. Geotech. Geoenviron., 132(5) (2006) 591-602.
[45] W.L. Lim, G.R. McDowell, Discrete element modelling of railway ballast, Granul. Matter, 7(1) (2005) 19-29.
[46] M. Lu, G.R. McDowell, Discrete element modelling of railway ballast under triaxial conditions, Geomechanics and Geoengineering, 3(4) (2008) 257-270.
[47] J. Lin, E. Bauer, W. Wu, A combined method to model grain crushing with DEM, Geosci. Front., 11(2) (2020) 451-459.
[48] C. O'Sullivan, Particulate Discrete Element Modelling: A Geomechanics Perspective, Taylor & Francis, England 2011.
[49] H. Iwata, T. Homma, Distribution of coordination numbers in random packing of homogeneous spheres, Powder Technol., 10(1) (1974) 79-83.
[50] P.H. Shipway, I.M. Hutchings, Fracture of brittle spheres under compression and impact loading. I. Elastic stress distributions, Philos. Mag. A, 67(6) (1993) 1389-1404.
[51] M. Matsumoto, T. Nishimura, Mersenne Twister: A 623-dimensionally equidistributed uniform pseudo- random number generator, ACM T. Model. Comput. S., 8(1) (1998) 3-30.
[52] ASTM-D7012-14e1, Standard Test Methods for Compressive Strength and Elastic Moduli of Intact Rock Core Specimens under Varying States of Stress and Temperatures, in, ASTM International, West Conshohocken, PA, 2014.
[53] ASTM-C1444-00, Standard Test Method for Measuring the Angle of Repose of Free-Flowing Mold Powders, in, ASTM International, West Conshohocken, PA, 2000.
[54] J. Christoffersen, M.M. Mehrabadi, S. Nemat-Nasser, A Micromechanical Description of Granular Material Behavior, Journal of Applied Mechanics, 48(2) (1981) 339-344.
[55] J.C. Jaeger, Failure of rocks under tensile conditions, Int. J. Rock Mech. Min., 4(2) (1967) 219-227.
[56] Y. Hiramatsu, Y. Oka, Determination of the tensile strength of rock by a compression test of an irregular test piece, Int. J. Rock Mech. Min., 3(2) (1966) 89-90.
[57] Y. Salami, C. Dano, P.-Y. Hicher, An experimental study on the influence of the coordination number on grain crushing, Eur. J. Environ. Civ. En., 23(3) (2017) 432-448.
[58] B.O. Hardin, Crushing of soil particles, Journal of Geotechnical Engineering, 111(10) (1985) 1177-1192.
[59] Y. Xiao, M. Meng, A. Daouadji, Q. Chen, Z. Wu, X. Jiang, Effects of particle size on crushing and deformation behaviors of rockfill materials, Geosci. Front., 11(2) (2020) 375-388.
[60] S. Bisht Mukesh, A. Das, DEM Study on Particle Shape Evolution during Crushing of Granular Materials, Int. J. Geomech., 21(7) (2021) 04021101.
[61] X. Zhu, S. Li, Y. Li, T. Li, J. Yin, Study of the influence of particle breakage on compression properties for carbonate sand, B. Eng. Geol. Environ., 81(3) (2022) 89.
[62] T.W. Lambe, R.V. Whitman, Soil Mechanics, John Wiley & Sons, New York, 1969.
[63] X. Li, J. Liu, J. Li, Fractal dimension, particle shape, and particle breakage analysis for calcareous sand, Eng. Geol. Environ., 81(3) (2022) 106.
[64] B. Zhao, J. Wang, M.R. Coop, G. Viggiani, M. Jiang, An investigation of single sand particle fracture using X-ray micro-tomography, Géotechnique, 65(8) (2015) 625-641.
[65] D.L. Turcotte, Fractals and fragmentation, Journal of Geophysical Research: Solid Earth, 91(B2) (1986) 1921-1926.
[66] G.R. McDowell, M.D. Bolton, D. Robertson, The fractal crushing of granular materials, J. Mech. Phys. Solids, 44(12) (1996) 2079-2101.