بررسی آرایش دانه‌ها در رفتار مصالح دانه‌ای ترد تحت بارگذاری تک‌محوری فشاری با روش المان گسسته

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده مهندسی عمران و مرکز تحقیقات زلزله، دانشگاه صنعتی سهند، تبریز، ایران

چکیده

مصالح دانه‌ای در بسیاری از پروژ‌ه‌ها همچون سدها، خطوط راه‌آهن و موج‌شکن‌ها مورد استفاده قرار می‌گیرند. چون ابعاد مصالح دانه‌ای در این پروژه‌ها از چند سانتی‌متر شروع و گاهی به یک متر نیز می‌رسد، لذا انجام آزمایش‌های آزمایشگاهی بسیار پرهزینه، زمان‌بر و حتی غیرممکن می‌گردد. بدین منظور، استفاده از مدل‌سازی عددی برای بررسی تأثیر پارامترهای مختلف بر رفتار مکانیکی این نوع مصالح بسیار حائز اهمیت می‌باشد. از میان عوامل مؤثر، عامل آرایش دانه‌ها  در این تحقیق بررسی می‌شود. بدین منظور، دانه‌های استوانه‌ای و مکعبی شکل به عنوان نماینده دانه‌های گردگوشه و تیزگوشه، در دو وضعیت آرایش منظّم و نامنظّم به روش المان گسسته مدل‌سازی شده و رفتار تنش-کرنش، انرژی اعمالی و مقادیر شکست بعد از بارگذاری، بررسی می‌گردند. استفاده از مدل غیرخطی هرتز و تعیین پارامترهای آن بر اساس آزمایش‌های آزمایشگاهی، کنترل یکنواختی توزیع دانه‌ها بر اساس تعداد نقاط تماس به همراه شیب و راستای قراگیری دانه‌ها، تعریف معیار شکست بر اساس معیار فون‌میزز و اعمال الگوی شکست بر اساس دونیم شدن دانه‌ها از جمله ویژگی‌های مدل به کار رفته می‌باشند. به منظور صحت‌سنجی مدل عددی، آزمایش‌های آزمایشگاهی مشابه نیز صورت گرفته و نتایج آن‌ها با یکدیگر مقایسه شدند. نتایج حاصله حاکی از آن می‌باشد که مدل عددی می‌تواند با دقت بالایی، تأثیر نحوه قرارگیری دانه‌ها را بر رفتار مصالح بررسی نماید. همچنین با توجه به وجود اشکال مختلف در مصالح دانه‌ای، نقش آرایش ترکیبی با شکل‌های مختلف دانه‌ها نیز بر روی نتایج حاصله مورد بررسی قرار گرفت.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

DEM investigation of the effect of arrangement of grains on the behavior of brittle granular materials subjected to one dimensional compression

نویسندگان [English]

  • Vahid Gorbanpoor
  • Mehrdad EMAMI Tabrizi
Civil Engineering Faculty, Sahand University of Technology
چکیده [English]

Granular materials are used in many projects such as dams, railways and breakwaters. Because the size of granular materials in these projects starts from a few centimeters and sometimes reaches one meter, conducting laboratory experiments would be very expensive, time-consuming and even impossible. For this purpose, the use of numerical modeling to investigate the effect of different parameters on the mechanical behavior of this type of material is very important. Among the effective factors, grain arrangement is investigated in this study. Thus, cylindrical and cubic grains are modeled as representative of rounded and angular grains, in two regular and irregular arrangement based on the discrete element method and stress-strain behavior, applied energy and breakage values after loading are investigated. Using the non-linear Hertz model and determining its parameters based on laboratory experiments, controlling the uniformity of grain distribution based on the number of contact points along with the dip and direction of grains, defining the breakage criterion based on Von-Mises criterion and applying the breakage pattern based on particle splitting are among the features of the model used. In order to validate the numerical model, similar laboratory experiments were performed and their results were compared with each other. The results showed that the numerical model can study the effect of the arrangement of grains on the behavior of materials with high accuracy. Also, due to the existence of different shapes in granular materials, the effect of mixed arrangement was investigated on the results.

کلیدواژه‌ها [English]

  • Grain arrangement
  • Behavior of materials
  • Discrete element method
  • Von-Mises criterion
  • Non-linear Hertz model
[1] E. Seyedi Hosseininia, A.A. Mirghasemi, Numerical simulation of breakage of two-dimensional polygon- shaped particles using discrete element method, Powder Technol., 166(2) (2006) 100-112.
[2] R. Deluzarche, B. Cambou, Discrete numerical modelling of rockfill dams, International Journal for Numerical and Analytical Methods in Geomechanics, 30(11) (2006) 1075-1096.
[3] E.E. Alonso, M. Tapias, J. Gili, Scale effects in rockfill behaviour, Geotech. Lett., 2(3) (2012) 155-160.
[4] W. Zhou, G. Ma, X.-L. Chang, Y. Duan, Discrete modeling of rockfill materials considering the irregular shaped particles and their crushability, Eng. Computation, 32(4) (2015) 1104-1120.
[5] F. Zhu, J. Zhao, Interplays between particle shape and particle breakage in confined continuous crushing of granular media, Powder Technol., 378 (2021) 455-467.
[6] T. Qu, M. Wang, Y. Feng, Applicability of discrete element method with spherical and clumped particles for constitutive study of granular materials, J. Rock Mech. Geotech. Eng., 14(1) (2022) 240-251.
[7] B. Indraratna, D. Ionescu, H.D. Christie, Shear behavior of railway ballast based on large-scale triaxial tests, J. Geotech. Geoenviron., 124(5) (1998) 439-449.
[8] E. Frossard, W. Hu, C. Dano, P.Y. Hicher, Rockfill shear strength evaluation: a rational method based on size effects, Géotechnique, 62(5) (2012) 415-427.
[9] P.A. Cundall, O.D.L. Strack, A discrete numerical model for granular assemblies, Géotechnique, 29(1) (1979) 47-65.
[10] C. Thornton, K.K. Yin, M.J. Adams, Numerical simulation of the impact fracture and fragmentation of agglomerates, J. Phys. D Appl. Phys., 29(2) (1996) 424-435.
[11] M. Lu, G.R. McDowell, The importance of modelling ballast particle shape in the discrete element method, Granul. Matter, 9(1) (2007) 69.
[12] G.R. McDowell, W.L. Lim, A.C. Collop, R. Armitage, N.H. Thom, Comparison of ballast index tests for railway trackbeds, Proceedings of the Institution of Civil Engineers - Geotechnical Engineering, 157(3)(2004) 151-161.
[13] S. Roshankhah, R. Shafipour, A. Soroush, 2D Numerical Modeling of Soil Behavior under Drained Tri- axial loading with Discrete Element Method, Journal of Civil and Surveying Engineering, 45(1) (2011) 1- 8 (In persian).
[14] E. Seyedi Hosseininia, A.A. Mirghasemi, Effect of particle breakage on the behavior of simulated angular particle assemblies, China Part., 5(5) (2007) 328-336.
[15] A. Bagherzadeh-Khalkhali, A.A. Mirghasemi, S. Mohammadi, Micromechanics of breakage in sharp- edge particles using combined DEM and FEM, Particuology, 6(5) (2008) 347-361.
[16] M. Tapias, E.E. Alonso, J. Gili, A particle model for rockfill behaviour, Géotechnique, 65(12) (2015) 975-994.
[17] T. Zhang, C. Zhang, J. Zou, B. Wang, F. Song, W. Yang, DEM exploration of the effect of particle shape on particle breakage in granular assemblies, Comput. Geotech., 122 (2020) 103542.
[18] A. Sarabi, A. Mahboubi, T‌hree-dimensional modeling of  rockfill using D‌E‌M considering particle breakage, Sharif Journal of Civil Engineering, 36.2(2.1) (2020) 79-90 (In persian).
[19] N. Mahbubi Motlagh, A. Noorzad, Discrete Element Method Simulation of Dynamic Behavior of Granular Materials, Amirkabir Journal of Civil Engineering, 53(10) (2021) 13 (In persian).
[20] G. Kang, Y.-j. Ning, R. Liu, P.-w. Chen, S.-p. Pang, Simulation of force chains and particle breakage of granular material by numerical manifold method, Powder Technol., 390 (2021) 464-472.
[21] Y.P. Cheng, M.D. Bolton, Y. Nakata, Crushing and plastic deformation of soils simulated using DEM, Géotechnique, 54(2) (2004) 131-141.
[22] Y.P. Cheng, Y. Nakata, M.D. Bolton, Discrete element simulation of crushable soil, Géotechnique, 53(7) (2003) 633-641.
[23] O. Tsoungui, D. Vallet, J.-C. Charmet, Numerical model of crushing of grains inside two-dimensional granular materials, Powder Technol., 105(1) (1999) 190-198.
[24] S. Lobo-Guerrero, L.E. Vallejo, Crushing a weak granular material: experimental numerical analyses, Géotechnique, 55(3) (2005) 245-249.
[25] J.P. De Bono, G.R. McDowell, D. Wanatowski, DEM of triaxial tests on crushable cemented sand, Granul. Matter, 16(4) (2014) 563-572.
[26] J.P. De Bono, G.R. McDowell, DEM of triaxial tests on crushable sand, Granul. Matter, 16(4) (2014) 551-562.
[27] N. Zhang, A. Hedayat, S. Han, R. Yang, H.G. Bolaños Sosa, J.J. González Cárdenas, G.E. Salas Álvarez, Isotropic compression behavior of granular assembly with non-spherical particles by X-ray micro- computed tomography and discrete element modeling, J. Rock Mech. Geotech. Eng., 13(5) (2021) 972- 984.
[28] M. Takei, O. Kusakabe, T. Hayashi, Time-dependent behavior of crushable materials in one-dimensional compression tests, Soils Found., 41 (2001) 97-121.
[29] E. Liu, Breakage and deformation mechanisms of crushable granular materials, Comput. Geotech., 37(5) (2010) 723-730.
[30] B.-Y. Zhang, Y.-X. Jie, D.-Z. Kong, Particle size distribution and relative breakage for a cement ellipsoid aggregate, Comput. Geotech., 53 (2013) 31-39.
[31] G. Yang, X. Yan, S. Nimbalkar, J. Xu, Effect of Particle Shape and Confining Pressure on Breakage and Deformation of Artificial Rockfill, International Journal of Geosynthetics and Ground Engineering, 5(2) (2019) 15.
[32] W. Zheng, D.D. Tannant, Grain breakage criteria for discrete element models of sand crushing under one- dimensional compression, Comput. Geotech., 95 (2018) 231-239.
[33] J. De Bono, G.R. McDowell, Particle breakage criteria in discrete-element modelling, Géotechnique, 66(12) (2016) 1014-1027.
[34] D. Shi, L. Zheng, J. Xue, J. Sun, DEM modeling of particle breakage in silica sands under one-dimensional compression, Acta Mech. Solida Sin., 29 (2016) 78-94.
[35] G.-Y. Liu, W.-J. Xu, Q.-C. Sun, N. Govender, Study on the particle breakage of ballast based on a GPU accelerated discrete element method, Geosci. Front., 11(2) (2020) 461-471.
[36] R. De Frias Lopez, S. Larsson, J. Silfwerbrand, A discrete element material model including particle degradation suitable for rockfill embankments, Comput. Geotech., 115 (2019) 103166.
[37] Y. Wang, S. Shao, Z. Wang, Effect of particle breakage and shape on the mechanical behaviors of granular materials, Adv. Civil Eng., 2019 (2019) 7248427.
[38] W. Zhou, L. Yang, G. Ma, X. Chang, Z. Lai, K. Xu, DEM analysis of the size effects on the behavior of crushable granular materials, Granul. Matter, 18(3) (2016) 64.
[39] G.R. McDowell, H. Li, Discrete element modelling of scaled railway ballast under triaxial conditions, Granul. Matter, 18(3) (2016) 66.
[40] M.O. Ciantia, M. Arroyo, F. Calvetti, A. Gens, An approach to enhance efficiency of DEM modelling of soils with crushable grains, Géotechnique, 65(2) (2015) 91-110.
[41] G.R. McDowell, J.P. De Bono, On the micro mechanics of one-dimensional normal compression, Géotechnique, 63(11) (2013) 895-908.
[42] Itasca Counsalting Group. PFC ____Particle Flow Code, Ver. 5.0. Manual, in, 2015.
[43] R.D. Mindlin, H. Deresiewicz, Elastic Spheres in Contact Under Varying Oblique Forces, Trans. ASME, Appl. Mech. , 20 (1953) 327-344.
[44] G.-C. Cho, J. Dodds, J.C. Santamarina, Particle shape effects on packing density, stiffness, and strength: natural and crushed sands, J. Geotech. Geoenviron., 132(5) (2006) 591-602.
[45] W.L. Lim, G.R. McDowell, Discrete element modelling of railway ballast, Granul. Matter, 7(1) (2005) 19-29.
[46] M. Lu, G.R. McDowell, Discrete element modelling of railway ballast under triaxial conditions, Geomechanics and Geoengineering, 3(4) (2008) 257-270.
[47] J. Lin, E. Bauer, W. Wu, A combined method to model grain crushing with DEM, Geosci. Front., 11(2) (2020) 451-459.
[48] C. O'Sullivan, Particulate Discrete Element Modelling: A Geomechanics Perspective, Taylor & Francis, England 2011.
[49] H. Iwata, T. Homma, Distribution of coordination numbers in random packing of homogeneous spheres, Powder Technol., 10(1) (1974) 79-83.
[50] P.H. Shipway, I.M. Hutchings, Fracture of brittle spheres under compression and impact loading. I. Elastic stress distributions, Philos. Mag. A, 67(6) (1993) 1389-1404.
[51] M. Matsumoto, T. Nishimura, Mersenne Twister: A 623-dimensionally equidistributed uniform pseudo- random number generator, ACM T. Model. Comput. S., 8(1) (1998) 3-30.
[52] ASTM-D7012-14e1, Standard Test Methods for Compressive Strength and Elastic Moduli of Intact Rock Core Specimens under Varying States of Stress and Temperatures, in, ASTM International, West Conshohocken, PA, 2014.
[53] ASTM-C1444-00, Standard Test Method for Measuring the Angle of Repose of Free-Flowing Mold Powders, in, ASTM International, West Conshohocken, PA, 2000.
[54] J. Christoffersen, M.M. Mehrabadi, S. Nemat-Nasser, A Micromechanical Description of Granular Material Behavior, Journal of Applied Mechanics, 48(2) (1981) 339-344.
[55] J.C. Jaeger, Failure of rocks under tensile conditions, Int. J. Rock Mech. Min., 4(2) (1967) 219-227.
[56] Y. Hiramatsu, Y. Oka, Determination of the tensile strength of rock by a compression test of an irregular test piece, Int. J. Rock Mech. Min., 3(2) (1966) 89-90.
[57] Y. Salami, C. Dano, P.-Y. Hicher, An experimental study on the influence of the coordination number on grain crushing, Eur. J. Environ. Civ. En., 23(3) (2017) 432-448.
[58] B.O. Hardin, Crushing of soil particles, Journal of Geotechnical Engineering, 111(10) (1985) 1177-1192.
[59] Y. Xiao, M. Meng, A. Daouadji, Q. Chen, Z. Wu, X. Jiang, Effects of particle size on crushing and deformation behaviors of rockfill materials, Geosci. Front., 11(2) (2020) 375-388.
[60] S. Bisht Mukesh, A. Das, DEM Study on Particle Shape Evolution during Crushing of Granular Materials, Int. J. Geomech., 21(7) (2021) 04021101.
[61] X. Zhu, S. Li, Y. Li, T. Li, J. Yin, Study of the influence of particle breakage on compression properties for carbonate sand, B. Eng. Geol. Environ., 81(3) (2022) 89.
[62] T.W. Lambe, R.V. Whitman, Soil Mechanics, John Wiley & Sons, New York, 1969.
[63] X. Li, J. Liu, J. Li, Fractal dimension, particle shape, and particle breakage analysis for calcareous sand, Eng. Geol. Environ., 81(3) (2022) 106.
[64] B. Zhao, J. Wang, M.R. Coop, G. Viggiani, M. Jiang, An investigation of single sand particle fracture using X-ray micro-tomography, Géotechnique, 65(8) (2015) 625-641.
[65] D.L. Turcotte, Fractals and fragmentation, Journal of Geophysical Research: Solid Earth, 91(B2) (1986) 1921-1926.
[66] G.R. McDowell, M.D. Bolton, D. Robertson, The fractal crushing of granular materials, J. Mech. Phys. Solids, 44(12) (1996) 2079-2101.