[1] G.A. Lorenzo, D.T. Bergado, Fundamental parameters of cement-admixed clay—New approach, Journal of geotechnical and geoenvironmental engineering, 130(10) (2004) 1042-1050.
[2] K.L. Scrivener, R.J. Kirkpatrick, Innovation in use and research on cementitious material, Cement and concrete research, 38(2) (2008) 128-136.
[3] D. Khale, R. Chaudhary, Mechanism of geopolymerization and factors influencing its development: a review, Journal of materials science, 42(3) (2007) 729-746.
[4] J. Davidovits, Geopolymer chemistry and applications. Institut Géopolymère, Geopolymer Institute, Saint-Quentin, France, in, ISBN 2-951-14820-1-9, 2008.
[5] J. Davidovits, Geopolymers: inorganic polymeric new materials, Journal of Thermal Analysis and calorimetry, 37(8) (1991) 1633-1656.
[6] A. Palomo, F. Glasser, Chemically-bonded cementitious materials based on metakaolin, British ceramic. Transactions and journal, 91(4) (1992) 107-112.
[7] K. Vijai, R. Kumutha, B. Vishnuram, Effect of types of curing on strength of geopolymer concrete, International Journal of the Physical Sciences, 5(9) (2010) 1419-1423.
[8] D. Hardjito, S.E. Wallah, D.M. Sumajouw, B. Rangan, Factors influencing the compressive strength of fly ash-based geopolymer concrete, Civil engineering dimension, 6(2) (2004) 88-93.
[9] M.M. Al Bakri Abdullah, K. Hussin, M. Bnhussain, K.N. Ismail, Z. Yahya, R.A. Razak, Fly ash-based geopolymer lightweight concrete using foaming agent, International journal of molecular sciences, 13(6) (2012) 7186-7198.
[10] G. Saravanan, C. Jeyasehar, S. Kandasamy, Flyash Based Geopolymer Concrete-A State of the Art Review, Journal of Engineering Science & Technology Review, 6(1) (2013).
[11] N. Cristelo, S. Glendinning, A. Teixeira Pinto, Deep soft soil improvement by alkaline activation, Proceedings of the Institution of Civil Engineers-Ground Improvement, 164(2) (2011) 73-82.
[12] A. Kampala, S. Horpibulsuk, A. Chinkullijniwat, S.-L. Shen, Engineering properties of recycled calcium carbide residue stabilized clay as fill and pavement materials, Construction and Building Materials, 46 (2013) 203-210.
[13] M. Zhang, H. Guo, T. El-Korchi, G. Zhang, M. Tao, Experimental feasibility study of geopolymer as the next-generation soil stabilizer, Construction and building materials, 47 (2013) 1468-1478.
[14] P. Sargent, P.N. Hughes, M. Rouainia, M.L. White, the use of alkali activated waste binders in enhancing the mechanical properties and durability of soft alluvial soils, Engineering geology, 152(1) (2013) 96-108.
[15] N. Cristelo, S. Glendinning, L. Fernandes, A.T. Pinto, Effects of alkaline-activated fly ash and Portland cement on soft soil stabilisation, Acta Geotechnica, 8(4) (2013) 395-405.
[16] B. Singhi, A.I. Laskar, M.A. Ahmed, Investigation on soil–geopolymer with slag, fly ash and their blending, Arabian Journal for science and engineering, 41(2) (2016) 393-400.
[17] R.A. Mozumder, A.I. Laskar, Prediction of unconfined compressive strength of geopolymer stabilized clayey soil using artificial neural network, Computers and Geotechnics, 69 (2015) 291-300.
[18] I. Phummiphan, S. Horpibulsuk, P. Sukmak, A. Chinkulkijniwat, A. Arulrajah, S.-L. Shen, Stabilisation of marginal lateritic soil using high calcium fly ash-based geopolymer, Road Materials and Pavement Design, 17(4) (2016) 877-891.
[19] M. Abdullah, F. Ahmad, A. Mustafa Al Bakri, Geopolymer application in soil: a short review, Applied Mechanics and Materials, 754 (2015) 378-381.
[20] A.M. Al Bakri, H. Kamarudin, M. Bnhussain, I.K. Nizar, A. Rafiza, A. Izzat, Chemical reactions in the geopolymerisation process using fly ash-based geopolymer: a review, Australian Journal of Basic and Applied Sciences, 5(7) (2011) 1199-1203.
[21] P.N. Lemougna, K.J. MacKenzie, U.C. Melo, Synthesis and thermal properties of inorganic polymers (geopolymers) for structural and refractory applications from volcanic ash, Ceramics International, 37(8) (2011) 3011-3018.
[22] E. Papa, V. Medri, E. Landi, B. Ballarin, F. Miccio, Production and characterization of geopolymers based on mixed compositions of metakaolin and coal ashes, Materials & Design (1980-2015), 56 (2014) 409-415.
[23] S.M. Rao, I.P. Acharya, Synthesis and characterization of fly ash geopolymer sand, Journal of materials in civil engineering, 26(5) (2014) 912-917.
[24] M.P. Bilondi1a, S. Marandi, F. Ghasemi2b, Effect of recycled glass powder on asphalt concrete modification, Structural Engineering and Mechanics, 59(02) (2016) 373-385.
[25] M. Pattengil, T. Shutt, Use of ground glass as a pozzolan, in: Proc., Int. Symp. on Utilization of Waste Glass in Secondary Products, ASCE, Albuquerque, NM, 1973.
[26] M. Sabbagh Gol, V. Toufigh, Feasibility Study of Sandy Soil Stabilization with Glass Powder and Natural Pozzolan Based Geopolymer, Amirkabir Journal of Civil Engineering, 51(1) (2019) 169-182.
[27] A.B. Pascual, M.T. Tognonvi, A. Tagnit-Hamou, Waste glass powder-based alkali-activated mortar, Int. J. Res. Eng. Technol, 3(13) (2014) 32-36.
[28] M. Cyr, R. Idir, T. Poinot, Properties of inorganic polymer (geopolymer) mortars made of glass cullet, Journal of Materials Science, 47(6) (2012) 2782-2797.
[29] M. Torres, F. Puertas, M. Blanco-Varela, PREPARACIÓN DE CEMENTOS ALCALINOS A PARTIR DE RESIDUOS VÍTREOS. SOLUBILIDAD DE RESIDUOS VÍTREOS EN MEDIOS FUERTEMENTE BÁSICOS.
[30] F. Puertas, M. Torres-Carrasco, Use of glass waste as an activator in the preparation of alkali-activated slag. Mechanical strength and paste characterisation, Cement and Concrete Research, 57 (2014) 95-104.
[31] M. Torres-Carrasco, F. Puertas, Waste glass in the geopolymer preparation. Mechanical and microstructural characterisation, Journal of cleaner production, 90 (2015) 397-408.
[32] C. Phetchuay, S. Horpibulsuk, C. Suksiripattanapong, A. Chinkulkijniwat, A. Arulrajah, M.M. Disfani, Calcium carbide residue: Alkaline activator for clay–fly ash geopolymer, Construction and Building Materials, 69 (2014) 285-294.
[33] J. Olufowobi, A. Ogundoju, B. Michael, O. Aderinlewo, Clay soil stabilisation using powdered glass, Journal of Engineering Science and Technology, 9(5) (2014) 541-558.
[34] J.R. Benny, J. Jolly, J.M. Sebastian, M. Thomas, Effect of glass powder on engineering properties of clayey soil, International Journal of Engineering Research & Technology, 6 (2017).
[35] H. Canakci, A. Aram, F. Celik, Stabilization of clay with waste soda lime glass powder, Procedia engineering, 161 (2016) 600-605.
[36] M.S. Khan, M. Tufail, M. Mateeullah, Effects of waste glass powder on the geotechnical properties of loose subsoils, Civil Engineering Journal, 4(9) (2018) 2044-2051.
[37] Y.-J. Du, N.-J. Jiang, S.-Y. Liu, S. Horpibulsuk, A. Arulrajah, Field evaluation of soft highway subgrade soil stabilized with calcium carbide residue, Soils and Foundations, 56(2) (2016) 301-314.
[38] C. Phetchuay, S. Horpibulsuk, A. Arulrajah, C. Suksiripattanapong, A. Udomchai, Strength development in soft marine clay stabilized by fly ash and calcium carbide residue based geopolymer, Applied clay science, 127 (2016) 134-142.
[39] S. Gurugubelli, D. Prasad, B. Eswararao, A laboratory study on the strength improve of expansive soil treated with calcium carbide residue and fly ash, International Journal of innovative research in technology, 3(12) (2017) 120-125.
[40] A.A.S. Tigue, J.R. Dungca, H. Hinode, W. Kurniawan, M.A.B. Promentilla, Synthesis of a one-part geopolymer system for soil stabilizer using fly ash and volcanic ash, in: MATEC Web of Conferences, EDP Sciences, 2018, pp. 05017.
[41] D. ASTM, Standard test method for particle-size analysis of soils, (2007).
[42] A. ASTM, D4318-10 stardard test methods for liquid limit, plastic limit and plasticity index of soils, astm int, West Conshohocken, Pa, (2010).
[43] D. ASTM, 2487. Standard practice for classification of soils for engineering purposes, in: American Society for Testing of Materials, 2011.
[44] D. ASTM, on Soil and Rock: Standard test methods for laboratory compaction characteristics of soil using standard effort (12 400 Ft-lbf/ft3 (600 KN-m/m3)) 1, ASTM international, (2007).
[45] N. Makaratat, C. Jaturapitakkul, C. Namarak, V. Sata, Effects of binder and CaCl2 contents on the strength of calcium carbide residue-fly ash concrete, Cement and Concrete Composites, 33(3) (2011) 436-443.
[46] D. ASTM, Standard test method for unconfined compressive strength of cohesive soil, ASTM standard D, 2166 (2006).
[47] J. He, Synthesis and characterization of geopolymers for infrastructural applications, (2012).
[48] P. Chindaprasirt, C. Jaturapitakkul, W. Chalee, U. Rattanasak, Comparative study on the characteristics of fly ash and bottom ash geopolymers, Waste management, 29(2) (2009) 539-543.