[1] H.M. Moghaddam, M. Keramati, A. Ramesh, R. Naderi, Experimental Evaluation of the Effects of Structural Parameters, Installation Methods and Soil Density on the Micropile Bearing Capacity, International Journal of Civil Engineering, (2021) 1-13.
[2] N.C. Consoli, M.A. Vendruscolo, A. Fonini, F. Dalla Rosa, Fiber reinforcement effects on sand considering a wide cementation range, Geotextiles and Geomembranes, 27(3) (2009) 196-203.
[3] M. Ayeldeen, A. Negm, M. El-Sawwaf, M. Kitazume, Enhancing mechanical behaviors of collapsible soil using two biopolymers, Journal of Rock Mechanics and Geotechnical Engineering, 9(2) (2017) 329-339.
[4] K.Q. Tran, T. Satomi, H. Takahashi, Study on Effect of Cornsilk Fiber in Cemented Soil Stabilization, in: Congrès International de Géotechnique–Ouvrages–Structures, Springer, 2017, pp. 571-579.
[5] M.A. Khodabandeh, S. Nokande, A. Besharatinezhad, B. Sadeghi, S.M. Hosseini, The effect of acidic and alkaline chemical solutions on the behavior of collapsible soils, Periodica Polytechnica Civil Engineering, 64(3) (2020) 939-950.
[6] M.S. Pakbaz, R. Alipour, Influence of cement addition on the geotechnical properties of an Iranian clay, Applied Clay Science, 67 (2012) 1-4.
[7] K.Q. Tran, T. Satomi, H. Takahashi, Tensile behaviors of natural fiber and cement reinforced soil subjected to direct tensile test, Journal of Building Engineering, 24 (2019) 100748.
[8] H.A. Chenarboni, S.H. Lajevardi, H. MolaAbasi, E. Zeighami, The effect of zeolite and cement stabilization on the mechanical behavior of expansive soils, Construction and Building Materials, 272 (2021) 121630.
[9] K.S. Wani, B. Mir, A comparative laboratory scale study on the effect of waste boulder crusher dust and cement in stabilising marginal sediments, Geomechanics and Geoengineering, (2020) 1-12.
[10] M. Ayeldeen, M. Kitazume, Using fiber and liquid polymer to improve the behaviour of cement-stabilized soft clay, Geotextiles and Geomembranes, 45(6) (2017) 592-602.
[11] K.Q. Tran, T. Satomi, H. Takahashi, Study on strength behavior of cement stabilized sludge reinforced with waste cornsilk fiber, GEOMATE Journal, 13(39) (2017) 140-147.
[12] P. Donkor, E. Obonyo, Earthen construction materials: Assessing the feasibility of improving strength and deformability of compressed earth blocks using polypropylene fibers, Materials & Design, 83 (2015) 813-819.
[13] V. Afroughsabet, L. Biolzi, T. Ozbakkaloglu, High-performance fiber-reinforced concrete: a review, Journal of materials science, 51(14) (2016) 6517-6551.
[14] M.A. Dafalla, A.A.B. Moghal, A.K. Al-Obaid, Enhancing tensile strength in clays using polypropylene fibers, GEOMATE Journal, 12(29) (2017) 33-37.
[15] A.P. Balkis, The effects of waste marble dust and polypropylene fiber contents on mechanical properties of gypsum stabilized earthen, Construction and Building Materials, 134 (2017) 556-562.
[16] S. Bojnourdi, S.S. Narani, M. Abbaspour, T. Ebadi, S.M.M. Hosseini, Hydro-mechanical properties of unreinforced and fiber-reinforced used motor oil (UMO)-contaminated sand-bentonite mixtures, Engineering Geology, 279 (2020) 105886.
[17] K. Salimi, M. Ghazavi, Soil reinforcement and slope stabilisation using recycled waste plastic sheets, Geomechanics and Geoengineering, 16(6) (2021) 497-508.
[18] P. Zak, T. Ashour, A. Korjenic, S. Korjenic, W. Wu, The influence of natural reinforcement fibers, gypsum and cement on compressive strength of earth bricks materials, Construction and Building Materials, 106 (2016) 179-188.
[19] K.Q. Tran, T. Satomi, H. Takahashi, Improvement of mechanical behavior of cemented soil reinforced with waste cornsilk fibers, Construction and Building Materials, 178 (2018) 204-210.
[20] A. Diambra, E. Ibraim, D.M. Wood, A. Russell, Fibre reinforced sands: experiments and modelling, Geotextiles and geomembranes, 28(3) (2010) 238-250.
[21] A. Gholampour, T. Ozbakkaloglu, A review of natural fiber composites: Properties, modification and processing techniques, characterization, applications, Journal of Materials Science, 55(3) (2020) 829-892.
[22] F. Sabbaqzade, M. Keramati, H. Moradi Moghaddam, P. Hamidian, Evaluation of the mechanical behaviour of cement-stabilised collapsible soils treated with natural fibres, Geomechanics and Geoengineering, (2021) 1-16.
[23] D. ASTM, Standard test methods for laboratory compaction characteristics of soil using standard effort, ASTM D698, (2012).
[24] A. Standard, Test method for particle-size analysis of soils, ASTM international, West Conshohocken, PA, DOI: 10.1520/D4513, 11 (2007).
[25] A.C.D.-o. Soil, Rock, Standard test methods for specific gravity of soil solids by water pycnometer, ASTM international, 2006.
[26] A. Standard, Standard test methods for laboratory determination of water (moisture) content of soil and rock by mass, D2216-10). ASTM International, West Conshohocken, PA. doi, 10 (2010).
[27] A.C.D.-o. Soil, Rock, Standard test methods for liquid limit, plastic limit, and plasticity index of soils, ASTM international, 2010.
[28] S.D. Petroudy, Physical and mechanical properties of natural fibers, in: Advanced high strength natural fibre composites in construction, Elsevier, 2017, pp. 59-83.
[29] D. Astm, 2166. Standard test method for unconfined compressive strength of cohesive soil, Annual Book of ASTM standards, ASTM International, West Conshohocken, PA, USA, (2006).
[30] Z. Nazari, A. Tabarsa, N. Latifi, Effect of compaction delay on the strength and consolidation properties of cement-stabilized subgrade soil, Transportation Geotechnics, 27 (2021) 100495.