[1] A.A. Griffith, VI. The phenomena of rupture and flow in solids, Philosophical transactions of the royal society of london. Series A, containing papers of a mathematical or physical character, 221(582-593) (1921) 163-198.
[2] S.A. Silling, Reformulation of elasticity theory for discontinuities and long-range forces, Journal of the Mechanics and Physics of Solids, 48(1) (2000) 175-209.
[3] S.A. Silling, E. Askari, A meshfree method based on the peridynamic model of solid mechanics, Computers & structures, 83(17-18) (2005) 1526-1535.
[4] B. Kilic, A. Agwai, E. Madenci, Peridynamic theory for progressive damage prediction in center-cracked composite laminates, Composite Structures, 90(2) (2009) 141-151.
[5] C. Diyaroglu, E. Oterkus, S. Oterkus, E. Madenci, Peridynamics for bending of beams and plates with transverse shear deformation, International Journal of Solids and Structures, 69 (2015) 152-168.
[6] D. Huang, G. Lu, P. Qiao, An improved peridynamic approach for quasi-static elastic deformation and brittle fracture analysis, International Journal of Mechanical Sciences, 94 (2015) 111-122.
[7] E. Madenci, K. Colavito, N. Phan, Peridynamics for unguided crack growth prediction under mixed-mode loading, Engineering Fracture Mechanics, 167 (2016) 34-44.
[8] P. Seleson, D.J. Littlewood, Convergence studies in meshfree peridynamic simulations, Computers & Mathematics with Applications, 71(11) (2016) 2432-2448.
[9] V.P. Nguyen, T. Rabczuk, S. Bordas, M. Duflot, Meshless methods: a review and computer implementation aspects, Mathematics and computers in simulation, 79(3) (2008) 763-813.
[10] T. Rabczuk, T. Belytschko, Cracking particles: a simplified meshfree method for arbitrary evolving cracks, International Journal for Numerical Methods in Engineering, 61(13) (2004) 2316-2343.
[11] F. Bobaru, Y.D. Ha, Adaptive refinement and multiscale modeling in 2D peridynamics, (2011).
[12] D. Dipasquale, M. Zaccariotto, U. Galvanetto, Crack propagation with adaptive grid refinement in 2D peridynamics, International Journal of Fracture, 190(1-2) (2014) 1-22.
[13] J. Lee, S.E. Oh, J.-W. Hong, Parallel programming of a peridynamics code coupled with finite element method, International Journal of Fracture, 203(1-2) (2017) 99-114.
[14] F. Mossaiby, R. Rossi, P. Dadvand, S. Idelsohn, OpenCL‐based implementation of an unstructured edge‐based finite element convection‐diffusion solver on graphics hardware, International Journal for Numerical Methods in Engineering, 89(13) (2012) 1635-1651.
[15] B. Kilic, E. Madenci, Prediction of crack paths in a quenched glass plate by using peridynamic theory, International journal of fracture, 156(2) (2009) 165-177.
[16] B. Kilic, E. Madenci, Structural stability and failure analysis using peridynamic theory, International Journal of Non-Linear Mechanics, 44(8) (2009) 845-854.
[17] P. Diehl, M.A. Schweitzer, Efficient neighbor search for particle methods on GPUs, in: Meshfree Methods for Partial Differential Equations VII, Springer, 2015, pp. 81-95.
[18] Q. Le, W. Chan, J. Schwartz, A two‐dimensional ordinary, state‐based peridynamic model for linearly elastic solids, International Journal for Numerical Methods in Engineering, 98(8) (2014) 547-561.
[19] R. Kamgar, R. Tavakoli, P. Rahgozar, R. Jankowski, Application of discrete wavelet transform in seismic nonlinear analysis of soil–structure interaction problems, Earthquake Spectra, (2021) 8755293020988027.
[20] R. Kamgar, N. Majidi, A. Heidari, Wavelet-based Decomposition of Ground Acceleration for Efficient Calculation of Seismic Response in Elastoplastic Structures, Periodica Polytechnica Civil Engineering, (2020).
[21] R. Kamgar, M. Dadkhah, H. Naderpour, Seismic response evaluation of structures using discrete wavelet transform through linear analysis, in: Structures, Elsevier, 2021, pp. 863-882.
[22] M. Dadkhah, R. Kamgar, H. Heidarzadeh, Reducing the Cost of Calculations for Incremental Dynamic Analysis of Building Structures Using the Discrete Wavelet Transform, Journal of Earthquake Engineering, (2020) 1-26.
[23] E. Salajegheh, A. Heidari, Dynamic analysis of structures against earthquake by combined wavelet transform and fast Fourier transform, Asian Journal of Civil Engineering, (2002).
[24] E. Salajegheh, A. Heidari, Time history dynamic analysis of structures using filter banks and wavelet transforms, Computers & structures, 83(1) (2005) 53-68.
[25] A. Heidari, E. Salajegheh, Time history analysis of structures for earthquake loading by wavelet networks, ASIAN JOURNAL OF CIVIL ENGINEERING, 7 (2006).
[26] A. Heidari, J. Raeisi, S. Pahlavan Sadegh, Dynamic analysis of shear building structure using wavelet transform, Journal of Numerical Methods in Civil Engineering, 2(4) (2018) 20-26.
[27] A. Heidari, S. Pahlavan sadegh, J. Raeisi, Investigating the Effect of Soil Type on Non-linear Response Spectrum Using Wavelet Theory, International Journal of Civil Engineering, 17(12) (2019) 1909-1918.
[28] A. Kaveh, A. Aghakouchak, P. Zakian, Reduced record method for efficient time history dynamic analysis and optimal design, Earthquake and Structures, 35 (2015) 637-661.
[29] A. Heidari, N. Majidi, Earthquake Mapping Acceleration Analysis Using Wavelet Method, Earthquake Engineering and Engineering Vibration, (2019).
[30] R. Kamgar, N. Majidi, A. Heidari, Continuous Wavelet and Fourier Transform Methods for the Evaluation of the Properties of Critical Excitation, Amirkabir Journal of Civil & Environmental Engineering (In Persian), (2019).
[31] O. Weckner, R. Abeyaratne, The effect of long-range forces on the dynamics of a bar, Journal of the Mechanics and Physics of Solids, 53(3) (2005) 705-728.
[32] S.A. Silling, M. Zimmermann, R. Abeyaratne, Deformation of a peridynamic bar, Journal of Elasticity, 73(1-3) (2003) 173-190.
[33] R.B. Lehoucq, S.A. Silling, Force flux and the peridynamic stress tensor, Journal of the Mechanics and Physics of Solids, 56(4) (2008) 1566-1577.
[34] H.D. Miranda, J. Orr, C. Williams, Fast interaction functions for bond-based peridynamics, European Journal of Computational Mechanics, 27(3) (2018) 247-276.
[35] F. Mossaiby, A. Shojaei, M. Zaccariotto, U. Galvanetto, OpenCL implementation of a high performance 3D Peridynamic model on graphics accelerators, Computers & Mathematics with Applications, 74(8) (2017) 1856-1870.
[36] L. Wu, D. Huang, Y. Xu, L. Wang, A rate-dependent dynamic damage model in peridynamics for concrete under impact loading, International Journal of Damage Mechanics, 29(7) (2020) 1035-1058.
[37] R.W. Macek, S.A. Silling, Peridynamics via finite element analysis, Finite Elements in Analysis and Design, 43(15) (2007) 1169-1178.
[38] M. Misiti, Y. Misiti, G. Oppenheim, J. Poggi, Wavelet Toolbox: Computation, Visualization, Programming User’s Guide, Ver, 1.
[39] S. Addison Paul, The illustrated wavelet transform handbook: introductory theory and applications in science, engineering, medicine and finance, Institute of Physics Publishing, 2002.
[40] R. Polikar, The Wavelet Tutorial-http:\\users. rowan. edu/∼ polikar, WAVELETS/WTpart1. html, (1999).
[41] M. Schneiders, v.d. Molengraft, M. Steinbuch, Wavelets in control engineering, Technische Universiteit Eindhoven, 2001.
[42] O. Rioul, P. Duhamel, Fast algorithms for discrete and continuous wavelet transforms, IEEE Transactions on Information Theory, 38(2) (1992) 569-586.
[43] S.G. Mallat, A theory for multiresolution signal decomposition: the wavelet representation, IEEE Transactions on Pattern Analysis & Machine Intelligence, (7) (1989) 674-693.
[44] G. Strang, T. Nguyen, Wavelets and Filter Banks, 2 nd ed., SIAM, 1996.
[45] P.S. Addison, The Illustrated Wavelet Transform Handbook: Introductory Theory and Applications in Science, Engineering, Medicine and Finance, 2 nd ed., CRC Press, 2016.
[46] R. Polikar, The Wavelet Tutorial, in, 1996.
[47] S. Mallat, A Wavelet Tour of Signal Processing, Elsevier, USA, 2008.
[48] A. Heidari, E. Salajegheh, Approximate dynamic analysis of structures for earthquake loading using FWT, International Journal of Engineering, 20(1) (2007).
[49] L. Hsu, C.-T. Hsu, Complete stress—strain behaviour of high-strength concrete under compression, Magazine of concrete research, 46(169) (1994) 301-312.
[50] P. Wang, S. Shah, A. Naaman, Stress-strain curves of normal and lightweight concrete in compression, in: Journal Proceedings, 1978, pp. 603-611.
[51] S. Popovics, A numerical approach to the complete stress-strain curve of concrete, Cement and concrete research, 3(5) (1973) 583-599.
[52] J. Del Viso, J. Carmona, G. Ruiz, Shape and size effects on the compressive strength of high-strength concrete, Cement and Concrete Research, 38(3) (2008) 386-395.
[53] A. Committee, I.O.f. Standardization, Building code requirements for structural concrete (ACI 318-08) and commentary, in, American Concrete Institute, 2008.
[54] Z. Yang, J. Chen, Finite element modelling of multiple cohesive discrete crack propagation in reinforced concrete beams, Engineering Fracture Mechanics, 72(14) (2005) 2280-2297.
[55] M.M. Raouffard, M. Nishiyama, Fire response of exterior reinforced concrete beam-column subassemblages, Fire Safety Journal, 91 (2017) 498-505.