[1] H. Bashin, DEVELOPMENT OF METHODS TO QUANTIFY BITUMEN-AGGREGATE ADHESION AND LOSS OF ADHESION DUE TO WATER, (2007).
[2] J. Grenfell, N. Ad, Y. Liu, Assessing asphalt mixture moisture susceptibility through intrinsic adhesion, bitumen stripping and mechanical damage, Road Materials and Pavement Design, 15(1) (2014) 131–152.
[3] C. Xingwei, H. Baoshan, Evaluation of moisture damage in hot mix asphalt using simple performance and superpave indirect tensile tests, (2007).
[4] F. Xiao, J. Jordan, S. N. Amirkhanian, Laboratory investigation of moisture damage in warm-mix asphalt containing moist aggregate”, Transportation Research Record: Journal of the Transportation Research Board, 2126(1) (2009) 115–124.
[5] C. DingXin, N. Dallas, R. Little, L. Lytton, C. James, Surface Energy Measurement of Asphalt and Its Application to Predicting Fatigue and Healing in Asphalt Mixture, (2002).
[6] H. Wen, Fatigue performance evaluation of WesTrack asphalt mixtures based on viscoelastic analysis of indirect tensile test, Ph.D. thesis, NC State Univ., Raleigh, NC, (2001).
[7] D. Packham, Work of adhesion: Contact angles and contact mechanics, Int. J. Adhes. Adhes, 16(2) (1996) 121–128.
[8] A. R. Copeland, Influence of moisture on bond strength of asphalt–aggregate systems, (PhD dissertation), Civil Engineering, Graduate School of Vanderbilt University, (2007).
[9] S. Wynand, Applications of Nanotechnology in Road Pavement Engineering, (2011).
[10] S. Ghaffarpour, A. Khodaii, Identification effect of Nano clay on engineering properties of asphalt mixtures, Amirkabir, MISC, 41(1) (2009), 49–57.
[11] G. Hamedi, F. Nejad, K. Oveisi, Estimating the moisture damage of asphalt mixture modified with Nano zinc oxide, Road Materials and Pavement Design, (2015).
[12] A. Akbari, A. Modarres, Effect of clay and lime Nano-additives on the freeze–thaw durability of hot mix asphalt, Road Materials and Pavement Design, (2017)
[13] G. Hamedi, Evaluating the effect of asphalt binder modification using nanomaterials on the moisture damage of hot mix asphalt, Road Materials and Pavement Design (2016).
[14] A. R. Azarhoosh, F. Nejad, A. Khodaii, Using the Surface Free Energy Method to Evaluate the Effects of Nanomaterial on the Fatigue Life of Hot Mix Asphalt, Journal of Materials in Civil Engineering, Volume 28 Issue 10 (2015).
[15] G. Shafabakhsh, S. Mirabdolazimi, M. Sadeghnejad, Evaluation the effect of nano-TiO2 on the rutting and fatigue behavior of asphalt mixtures, Constr. Build. Mater. (54) (2014) 566–571.
[16] J. Tanzadeh, F. Vahedi, P. Kheiry, R. Tanzadeh, Laboratory study on the effect of nano-TiO2 on rutting performance of asphalt pavements, Adv Mater Res: 622–3 (2012).
[17] A. R. Azarhoosh, F. Nejad, A. Khodaii, Evaluation of the effect of nano-TiO2 on the adhesion between aggregate and asphalt binder in hot mix asphalt, European Journal of Environmental and Civil Engineering, 22 (8) (2016) 946-961.
[18] ASTM, Gradation specification for dense asphalt mixtures (D3513), West Conshohocken, PA: ASTM International (2003).
[19] F. Xiao, A. N. Amirkhanian, S. N. Amirkhanian, Long-term ageing influence on rheological characteristics of asphalt binders containing carbon nanoparticles, International Journal of Pavement Engineering, 12 (2011) 533–541.
[20] G. Hamedi, A. Azarhoosh, M. Khodadadi, Effects of Asphalt Binder Modifying with Polypropylene on Moisture Susceptibility of Asphalt Mixtures with Thermodynamically Concepts, Periodica Polytechnica Civil Engineering, 62 (4) (2018) 901-910.
[21] I. G. D. Rocha Segundo, E. A. L. Dias, F. D. P. Fernandes, E. F. D. Freitas, M. F. Costa, J. O. Carneiro, “Photocatalytic asphalt pavement: The physicochemical and rheological impact of TiO2 Nano/micro particles and ZnO micro particles onto the bitumen, Road Materials and Pavement Design, 20(6) (2019) 1452-1467.
[22] S. S. Karahancer, M. Kiristi, S. Terzi, M. Saltan, A. U. Oksuz, L. Oksuz, Performance evaluation of Nano-modified asphalt concrete, Construction and Building Materials, 71 (2014) 283–288.
[23] N. Esmaeili,, G. Hamedi,, M. Khodadadi, Determination of the stripping process of asphalt mixtures and the effective mix design and SFE parameters on its different phases, Construction and Building Materials, (213) (2019) 167-181.
[24] R. J. Good, C. J. Van Oss, The modern theory of contact angle and the hydrogen bond components of surface energies, Modern approach to wettability, New York: Plenum Press, (1971).
[25] M. Alavi, Y. Hajj, A. Hanz, H. Bahia, Evaluating Adhesion Properties and Moisture Damage Susceptibility of Warm-Mix Asphalts, Transportation research record, 2295 (1) (2012) 44-53.
[26] A. W. Hefer, Adhesion in bitumen-aggregate systems and quantification of the effect of water on the adhesive bond, College Station, TX: Texas A&M University, (2005).
[27] ASTM, Standard test method for Marshall Stability and flow of asphalt mixtures, ASTM D6927–15, West Conshohocken, PA, (2015).