مقایسه قابلیت الگوریتم جهش تصادفی قورباغه با دیگر الگوریتم‌های فراکاوشی در طراحی شبکه‌های فاضلاب شهری

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه محقق اردبیلی، اردبیل، ایران

2 دانشکده مهندسی عمران دانشگاه تبریز

3 دانشگاه محقق اردبیلی

چکیده

بهینه­ سازی طراحی شبکه­ های جمع­ آوری و انتقال فاضلاب شهری به دلیل هزینه­ های بسیار بالای اجرای این زیرساخت­ ها همواره مورد توجه محققین و کارشناسان بوده است. تعدد متغیرهای تصمیم و پیچیده بودن قیودات حاکم بر مسئله، استفاده از روش‌های ریاضیاتی را در بهینه ­سازی این سیستم­ها با دشواری­ های زیادی همراه کرده و این امر استفاده از الگوریتم­ های فراکاوشی را در حل این مسائل ضروری ساخته است. الگوریتم جهش تصادفی قورباغه یکی از الگوریتم­ های فراکاوشی جدید است که قابلیت خود را در حل تعداد زیادی از مسائل بهینه ­سازی نشان داده است. در این تحقیق، قابلیت الگوریتم جهش تصادفی قورباغه در حل مسئله طراحی بهینه­ شبکه­ های فاضلاب شهری مورد بررسی قرار گرفته است. قطر لوله­ ها به عنوان متغیرهای تصمیم گسسته و عمق کارگذاری لوله­ ها به عنوان متغیرهای تصمیم پیوسته، همزمان در این تحقیق به عنوان مجهولات مسئله مطرح بوده­ اند. همچنین سه شبکه فاضلاب با 13، 41 و 65 متغیر تصمیم (به صورت ترکیبی از تعداد لوله‌ها و تعداد گره‌ها) به عنوان مطالعه موردی انتخاب شده است. رعایت قیودات متعدد فنی، اجرایی و هیدرولیکی نیز با تعریف توابع جریمه مناسب کنترل شده است. نتایج نشان داد که نتایج به دست آمده از الگوریتم جهش تصادفی قورباغه در مقایسه با بهترین پاسخ به دست آمده از الگوریتم­‌های ژنتیک، هوش تجمعی ذرات و رقابت زیست طبیعی در مسائل اول و سوم به ترتیب منجر به کاهش هزینه به میزان 0/43 و 3/2 درصد شده و در مسئله دوم نیز در مقایسه با دیگر روش‌ها، با کمترین میزان تعداد فراخوانی تابع هدف به تابع هدفی برابر دست یافته است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Comparison of the Capability of Shuffled Frog Leaping Algorithm with Other Metaheuristic Algorithms in Design of Urban Sewage Network

نویسندگان [English]

  • fariborz masoumi 1
  • sina masoumzadeh 2
  • Negin Zafari 3
  • saea esfandmaz 3
1 Department of civil engineering, faculty of engineering, university of mohaghegh ardabili, Ardabil, Iran
2 Civil Engineering faculty, Tabriz University
3 Mohaghegh Ardabili University
چکیده [English]

The optimal design and construction of sewage networks have always been considered by researchers and experts due to the very high costs of implementing this infrastructure. Being consisted of various variables and subjected to complex constraints, conventional mathematical optimization procedures are unlikely to be able to solve sewage network optimization problems. Thus, utilizing meta-heuristic optimization algorithms is a must to tackle these problems. The shuffled frog leaping algorithm (SFLA) is one of the new meta-heuristic algorithms which has shown its ability to solve a large number of optimization problems. In this research, the capability of the SFLA in solving the problem of optimal design of sewage networks has been investigated. The diameter of the pipes as discrete decision variables and the depth of pipe placement as continuous decision variables were simultaneously considered in this study as unknowns. To this end, three sewage networks with 13, 41, and 65 decision variables have been selected as case studies. Various technical, operational, and hydraulic constraints are controlled by defining appropriate penalty functions. The results showed that for case studies 1 and 3, the SFLA decreased the minimum construction costs derived by GA, PSO, and SCE algorithms by 0.43 and 3.2 percent respectively, and for the second case study, with the less number of function evaluations, SFLA has reached the equal objective function compared to other algorithms.

کلیدواژه‌ها [English]

  • Metaheuristic algorithm
  • Optimization
  • Cost minimization
  • Urban Sewage Networks
  • Shuffled frog leaping algorithm
[1] AA. Elimam, C. Charalambous, FH. Ghobrial, Optimum Design of Large Sewer Networks, Journal of Environmental Engineering, 115 (1989), 1171-90.
[2] M. Hsie, MY. Wu, CY Huang, Optimal Urban Sewer Layout Design Using Steiner Tree Problems, Engineering Optimization, 51 (2019), 1980-96.
[3] RK. Price, Design of Storm Water Sewers for Minimum Construction Cost, in Proc. 1st International Conference on Urban Strom Drainage (1978), pp. 636-47.
[4] GA. Walters, AB. Templeman, Non-Optimal Dynamic Programming Algorithms in the Design of Minimum Cost Drainage Systems, Engineering Optimization, 4 (1979), 139-48.
[5] H. Sharifzadeh, N. Amjady. A review of metaheuristic algorithms in optimization. Journal of Modeling in Engineering 12, no. 38 (2014): 27-43. (In Persian)
[6] Abbass HA (2001) MBO: Marriage in honey bees optimization a haplometrosis polygynous swarming
approach. In: Proceedings of the IEEE Conference on Evolutionary Computation, ICEC. IEEE, pp 207–
214
[7] Atashpaz-Gargari E, Lucas C (2007) Imperialist competitive algorithm: An algorithm for optimization
inspired by imperialistic competition. In: 2007 IEEE Congress on Evolutionary Computation, CEC 2007.
Ieee, pp 4661–4667
[8] Dorigo M, Birattari M, Stutzle T (2006) Ant colony optimization. IEEE Comput Intell Mag 1:28–39
[9] Holland JH (1975) Adaptation in natural and artificial systems : an introductory analysis with
applications to biology, control, and artificial intelligence. Ann Arbor Univ. Michigan Press 1975 viii,
183 p.
[10] Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of ICNN’95-international
conference on neural networks. IEEE, pp 1942–1948
[11] J. Izquierdo, I. Montalvo, R. Pérez, VS. Fuertes, Design Optimization of Wastewater Collection
Networks by Pso, Computers & Mathematics with Applications, 56 (2008), 777-84.
[12] MH. Afshar, A Parameter Free Continuous Ant Colony Optimization Algorithm for the Optimal Design of Storm Sewer Networks: Constrained and Unconstrained Approach, Advances in Engineering Software, 41 (2010), 188-95.
[13] MH. Afshar, Rebirthing Genetic Algorithm for Storm Sewer Network Design, Scientia Iranica, 19 (2012), 11-19.
[14] SF. Yeh, CW. Chu, YJ. Chang, MD. Lin, Applying Tabu Search and Simulated Annealing to the Optimal Design of Sewer Networks, Engineering Optimization, 43 (2011), 159-74.
[15] A. Ahmadi, MA. Zolfagharipoor, M. Nafisi, Development of a Hybrid Algorithm for the Optimal Design of Sewer Networks, Journal of Water Resources Planning and Management, 144 (2018), 04018045.
[16] MM. Zaheri, R. Ghanbari, MH. Afshar, A Two-Phase Simulation–Optimization Cellular Automata Method for Sewer Network Design Optimization, Engineering Optimization (2019).
[17] LY. Liang, RG. Thompson, DM Young, Optimising the Design of Sewer Networks Using Genetic Algorithms and Tabu Search, Engineering, Construction and Architectural Management, 11 (2004), 101-12.
[18] R. Moeini, Optimal Design of Sewer Network Size Using Ant Colony Optimization Algorithm: Comparing Performance of Four Different Algorithms, Computational Methods in Engineering, 36 (2017), 115-36. (In Persian)
[19] TC. Pan, JJ. Kao, Ga-QP Model to Optimize Sewer System Design, Journal of environmental engineering, 135 (2009), 17-24.
[20] S. Kumar, PK. Navin, YP. Mathur, Optimization of Sewerage System Using Simulated Annealing, International Journal of Engineering Research & Technology, 6 (2018), 1-6.
[21] TT. Ngo, D. Jung, JH. Kim, Robust Urban Drainage System: Development of a Novel Multiscenario-Based Design Approach, Journal of Water Resources Planning and Management, 145 (2019), 04019027.
[22] S. Akhoondian, M. Tabesh, Optimal Design Based on Wastwater Collection System, Journal of civil and surveying engineering, 45 (2012), 267-78. (In Persian)
[23] MH. Afshar, M. Rohani, Optimal Design of Gravitational Sewer Networks with General Cellular Automata, Journal of Water and Wastewater, 90 (2012), 12-25. (In Persian)
[24] R. Moeini, MH. Afshar, Constrained Ant Colony Optimisation Algorithm for the Layout and Size Optimisation of Sanitary Sewer Networks, Urban Water journal, 10 (2013), 154-73.
[25] M. Nafisi, A. Ahmadi, Sewer Networks Optimization by Particle Swarm Optimization with Abilities of Fly-Back Mechanism and Harmony Memory, J. Water Wastewater, 25 (2014), 76-87. (In Persian)
[26] R. Moeini, MH. Afshar, Optimization of Integrated Design of Wastewater Treatment and Sanitary Sewer Network Using Ant Colony Optimization Algorithm, Journal of Water and Wastewater, 25 (2014), 14-24. (In Persian)
[27] A. Altarabsheh, M. Ventresca, A. Kandil, Evolutionary Algorithm for Selecting Wastewater System Configuration, Journal of Computing in Civil Engineering, 32 (2018), 04018048.
[28] D. Mora-Melia, PL. Iglesias-Rey, FJ. Martínez-Solano, P. Muñoz-Velasco, The Efficiency of Setting Parameters in a Modified Shuffled Frog Leaping Algorithm Applied to Optimizing Water Distribution Networks, Water, 8 (2016), 182.
[29] G. Fang, Y. Guo, X. Wen, X. Fu, X. Lei, Y. Tian, T. Wang, Multi-Objective Differential Evolution-Chaos Shuffled Frog Leaping Algorithm for Water Resources System Optimization, Water Resources Management, 32 (2018), 3835-52.
[30] Y. Guo, X. Tian, G. Fang, YP. Xu, Many-Objective Optimization with Improved Shuffled Frog Leaping Algorithm for Inter-Basin Water Transfers, Advances in Water Resources, 138 (2020), 103531.
[31] MM. Eusuff, KE Lansey, Optimization of Water Distribution Network Design Using the Shuffled Frog Leaping Algorithm, Journal of Water Resources planning and management, 129 (2003), 210-25.
[32] LW. Mays, HG. Wenzel, Optimal design of multilevel branching sewer systems. Water Resour Res 12(1976)913–917.
[33] SW. Miles, JP .Heaney Better Than “Optimal” Method for Designing Drainage Systems. J Water Resour Plan Manag 114 (1988) 477–499.
[34] MH. Afshar. Improving the efficiency of ant algorithms using adaptive refinement: Application to storm water network design. Adv Water Resour 29 (2006) 1371–1382.
[35] MH. Afshar. Rebirthing particle swarm optimization algorithm: application to storm water network design. Can J Civ Eng 35 (2008) 1120–1127.
[36] MH. Afshar, M. Shahidi, M. Rohani, M. Sargolzaei. Application of cellular automata to sewer network optimization problems. Sci Iran 18(2011) 304–312.
[37] R. Moeini, MH. Afshar. Layout and size optimization of sanitary sewer network using intelligent ants. Adv Eng Softw 51(2012) 49–62.
[38] R. Moeini, MH. Afshar. Sewer network design Optimization problem using ant Colony Optimization Algorithm and Tree Growing Algorithm. In: Advances in Intelligent Systems and Computing. Springer Verlag, (2013) pp 91–105.