[1] A. Olotuah, Recourse to earth for low-cost housing in Nigeria, Building and environment, 37(1) (2002) 123-129.
[2] F. Tootoonchy, B. Asgarian, F. Danesh, Experimental in-plane behavior and retrofitting method of mud-brick walls, International Journal of Civil Engineering, 13(2) (2015) 191-201.
[3] A.U. Pope, Arthur Upham Pope Introducing Persian Architecture, Published under the auspices of the Farah Pahlavi Cultural Foundation & the …, 1976.
[4] A. Vatani Oskouei, M. Afzali, M. Madadipour, A. Bakhshi, Reinforcement Approach in Experimental Investigations of Mud Brick Wall under Diagonal Tension, Journal of Housing and Rural Environment, 35(154) (2016) 107-124 (in persian).
[5] UNESCO. World heritage list. Paris: United Nations Educational Scientific and Cultural Organization (UNESCO); 2016.
http://whc.unesco.org/en/list/.
[6] M. Bouhicha, F. Aouissi, S. Kenai, Performance of composite soil reinforced with barley straw, Cement and concrete composites, 27(5) (2005) 617-621.
[7] C. Galán-Marín, C. Rivera-Gómez, J. Petric, Clay-based composite stabilized with natural polymer and fibre, Construction and Building Materials, 24(8) (2010) 1462-1468.
[8] A.V. Oskouei, M. Afzali, M. Madadipour, Experimental investigation on mud bricks reinforced with natural additives under compressive and tensile tests, Construction and Building Materials, 142 (2017) 137-147.
[9] D. Silveira, H. Varum, A. Costa, Influence of the testing procedures in the mechanical characterization of adobe bricks, Construction and Building Materials, 40 (2013) 719-728.
[10] Ş. Yetgin, Ö. Çavdar, A. Cavdar, The effects of the fiber contents on the mechanic properties of the adobes, Construction and Building Materials, 22(3) (2008) 222-227.
[11] M. Ouedraogo, K. Dao, Y. Millogo, J.-E. Aubert, A. Messan, M. Seynou, L. Zerbo, M. Gomina, Physical, thermal and mechanical properties of adobes stabilized with fonio (Digitaria exilis) straw, Journal of Building Engineering, 23 (2019) 250-258.
[12] H. Danso, D.B. Martinson, M. Ali, J.B. Williams, Mechanisms by which the inclusion of natural fibres enhance the properties of soil blocks for construction, Journal of Composite Materials, 51(27) (2017) 3835-3845.
[13] J. Concha-Riedel, G. Araya-Letelier, F.C. Antico, U. Reidel, A. Glade, Influence of jute fibers to improve flexural toughness, impact resistance and drying shrinkage cracking in adobe mixes, in: Earthen Dwellings and Structures, Springer, 2019, pp. 269-278.
[14] O. Ige, H. Danso, Physico-mechanical and thermal gravimetric analysis of adobe masonry units reinforced with plantain pseudo-stem fibres for sustainable construction, Construction and Building Materials, 273 (2021) 121686.
[15] E. Olacia, A.L. Pisello, V. Chiodo, S. Maisano, A. Frazzica, L.F. Cabeza, Sustainable adobe bricks with seagrass fibres. Mechanical and thermal properties characterization, Construction and Building Materials, 239 (2020) 117669.
[16] R. Illampas, V.G. Loizou, I. Ioannou, Effect of straw fiber reinforcement on the mechanical properties of adobe bricks, in: Poromechanics VI, 2017, pp. 1331-1338.
[17] Y. Millogo, J.-C. Morel, J.-E. Aubert, K. Ghavami, Experimental analysis of Pressed Adobe Blocks reinforced with Hibiscus cannabinus fibers, Construction and Building Materials, 52 (2014) 71-78.
[18] G. Araya-Letelier, F. Antico, C. Burbano-Garcia, J. Concha-Riedel, J. Norambuena-Contreras, J. Concha, E.S. Flores, Experimental evaluation of adobe mixtures reinforced with jute fibers, Construction and Building Materials, 276 (2021) 122127.
[19] E. Quagliarini, S. Lenci, The influence of natural stabilizers and natural fibres on the mechanical properties of ancient Roman adobe bricks, Journal of Cultural Heritage, 11(3) (2010) 309-314.
[20] J. Vargas-Neumann, C. Oliveira, D. Silveira, H. Varum, Seismic Retrofit of Adobe Constructions, in: Strengthening and Retrofitting of Existing Structures, Springer, 2018, pp. 85-111.
[21] ASTM International, ASTM D7928 - 17 Standard Test Method for Particle-Size Distribution (Gradation) of Fine- Grained Soils Using the Sedimentation (Hydrometer) Analysis, USA, 2017.
[22] ASTM International, ASTM D6913/D6913M - 17 Standard Test Methods for Particle-Size Distribution (Gradation) of Soils Using Sieve Analysis, USA, 2017.
[23] ASTM International, ASTM D4318 - 17 Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils, USA, 2017.
[24] ASTM D 3822-07. Standard Test Method for Tensile Properties of Single Textile Fibers, 2007.
[25] EN 1926. Natural stone test methods – determination of compressive strength. Brussels: Comité Européen de Normalisation; 2006.
[26] F. Parisi, D. Asprone, L. Fenu, A. Prota, Experimental characterization of Italian composite adobe bricks reinforced with straw fibers, Composite Structures, 122 (2015) 300-307.
[27] NP EN 1052–1: 2002 Methods of test for masonry – Part 1: Determination of compressive strength. Brussels: European Committee for Standardization (CEN), Caparica: Instituto Português da Qualidade (IPQ); 2002 [Portuguese].
[28] ASTM C348-14, Standard Test Method for Flexural Strength of Hydraulic-Cement Mortars, 2014.
[29] EN 1015–11. Methods of test for mortar for masonry – part 11: determination of flexural and compressive strength of hardened mortar. Brussels: Comité Européen de Normalisation; 2019.
[30] K.Q. Tran, T. Satomi, H. Takahashi, Improvement of mechanical behavior of cemented soil reinforced with waste cornsilk fibers, Construction and Building Materials, 178 (2018) 204-210.
[31] D. Silveira, H. Varum, A. Costa, T. Martins, H. Pereira, J. Almeida, Mechanical properties of adobe bricks in ancient constructions, Construction and Building Materials, 28(1) (2012) 36-44.
[32] H. Danso, D.B. Martinson, M. Ali, J. Williams, Effect of fibre aspect ratio on mechanical properties of soil building blocks, Construction and Building Materials, 83 (2015) 314-319.