بررسی اثر خودروهای خودران و خودروهای خودران و متصل بر ظرفیت آزادراه‌ها با استفاده از شبیه سازی خردنگر

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه تربیت مدرس

2 دانشکده عمران و محیط زیست، دانشگاه تربیت مدرس

چکیده

ازدحام یکی از مشکلاتی است که بسیاری از کشورها را در دهه‌های گذشته آزار داده است و باعث تحمیل شدن هزینه‌های زیادی به بسیاری از کشورها شده است. به همین دلیل بسیاری از محققان به دنبال راهکارهایی در جهت کاهش ازدحام در شبکه‌های حمل‌ونقلی هستند. از طرف دیگر پیش‌بینی می‌شود که ظهور خودروهای خودران و متصل می‌تواند در کاهش ازدحام در راه‌ها و افزایش ظرفیت راه‌ها مؤثر واقع شود. به همین دلیل این مطالعه به بررسی اثر خودروهای خودران و خودروهای خودران و متصل بر ظرفیت راه‌ها می‌پردازد. در این مطالعه از یک شبکه آزادراه با قسمت Merge استفاده ‌شده است و شبیه‌سازی‌ها با استفاده از نرم‌افزار شبیه‌ساز خردنگر SUMO پیاده‌سازی شده‌اند. در این مطالعه برای تعیین رفتار رانندگی از مدل تعقیب خودرو برای حرکات طولی و از مدل تغییر خط برای حرکات عرضی استفاده ‌شده است. مدل تعقیب خودرو کرواس و مدل تغییر خط LC2013 جهت تعیین رفتار رانندگی در این مطالعه استفاده ‌شده‌اند. نتایج شبیه‌سازی‌ها نشان می‌دهد که خودروهای خودران می‌توانند ظرفیت راه‌ها را تا 52 درصد افزایش دهند و خودروهای خودران و متصل می‌توانند ظرفیت راه‌ها را تا 65 درصد افزایش دهند که این افزایش‌ها نشان ‌دهنده پتانسیل این خودروها جهت افزایش ظرفیت و کاهش ازدحام می‌باشد. همچنین نتایج نشان می‌دهد که زمانی این خودروها می‌توانند اثر چشمگیری بر ظرفیت بگذارند که حضور این نوع خودروها در جاده‌ها چشمگیر باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigating the effect of Automated Vehicles and Connected and Automated Vehicles on the capacity of freeways using microscopic simulation

نویسندگان [English]

  • Amirhosein Karbasi 1
  • Mahmoud Saffarzadeh 2
1 Tarbiat Modares university
2 Civil and Environmental Engineering, Tarbiat Modares University
چکیده [English]

Congestion is one of the problems that has bothered many countries in recent decades and has imposed huge costs on many countries. For this reason, many researchers are looking for ways to reduce congestion in transportation networks. On the other hand, it is predicted that the emergence of Automated Vehicles and Connected and Automated Vehicles can be effective in reducing congestion on the roads and increasing the capacity of the roads. For this reason, this study investigates the effect of Automated Vehicles and Connected and Automated Vehicles on the capacity of roads. In this study, a freeway network with the Merge section is used and the simulations are implemented using SUMO microscopic simulator software. In this study, to determine the driving behavior, the car following model for longitudinal movements and the lane changing model for lateral movements have been used. The Krauss car-following model and the LC2013 lane-changing model were used to determine driving behavior in this study. The simulation results show that Automated Vehicles can increase road capacity by up to 52% and Connected and Automated Vehicles can increase road capacity by up to 65%, which indicates the potential of these vehicles to increase capacity and reduce congestion. The results also show that these vehicles can have a significant impact on capacity when the presence of these vehicles on the road is significant.

کلیدواژه‌ها [English]

  • Connected and Automated Vehicles
  • Microsimulation
  • Capacity
  • Congestion
  • SUMO
[1] J.-P. Rodrigue, C. Comtois, B. Slack, The geography of transport systems, Routledge, 2016.
[2] T. Niels, M. Erciyas, K. Bogenberger, Impact of connected and autonomous vehicles on the capacity of signalized intersections–Microsimulation of an intersection in Munich,  (2018).
[3] SAE, Taxonomy and definitions for terms related to driving automation systems for on-road motor vehicles, SAE, 2016.
[4] Atkins, Research on the Impacts of Connected and Autonomous Vehicles (CAVs) on Traffic Flow, Department for Transport, 2016.
[5] B. Friedrich, The effect of autonomous vehicles on traffic, in:  Autonomous Driving, Springer, 2016, pp. 317-334.
[6] M. Hartmann, N. Motamedidehkordi, S. Krause, S. Hoffmann, P. Vortisch, F. Busch, Impact of automated vehicles on capacity of the German freeway network, in:  ITS World Congress, 2017.
[7] A. Olia, S. Razavi, B. Abdulhai, H. Abdelgawad, Traffic capacity implications of automated vehicles mixed with regular vehicles, Journal of Intelligent Transportation Systems, 22(3) (2018) 244-262.
[8] Q. Lu, T. Tettamanti, I. Varga, Impacts of autonomous vehicles on the urban fundamental diagram,  (2018).
[9] G. Tilg, K. Yang, M. Menendez, Evaluating the effects of automated vehicle technology on the capacity of freeway weaving sections, Transportation Research Part C: Emerging Technologies, 96 (2018) 3-21.
[10] Q. Lu, T. Tettamanti, D. Hörcher, I. Varga, The impact of autonomous vehicles on urban traffic network capacity: an experimental analysis by microscopic traffic simulation, Transportation Letters, 12(8) (2020) 540-549.
[11] A. Ghiasi, O. Hussain, Z.S. Qian, X. Li, A mixed traffic capacity analysis and lane management model for connected automated vehicles: A Markov chain method, Transportation Research Part B: Methodological, 106 (2017) 266-292.
[12] P. Liu, W. Fan, Exploring the impact of connected and autonomous vehicles on freeway capacity using a revised Intelligent Driver Model, Transportation planning and technology, 43(3) (2020) 279-292.
[13] Q. Wang, B. Li, Z. Li, L. Li, Effect of connected automated driving on traffic capacity, in:  2017 Chinese Automation Congress (CAC), IEEE, 2017, pp. 633-637.
[14] J. Song, Y. Wu, Z. Xu, X. Lin, Research on car-following model based on SUMO, in:  The 7th IEEE/International Conference on Advanced Infocomm Technology, IEEE, 2014, pp. 47-55.
[15] M. Treiber, A. Hennecke, D. Helbing, Congested traffic states in empirical observations and microscopic simulations, Physical review E, 62(2) (2000) 1805.
[16] G.F. Newell, A simplified car-following theory: a lower order model, Transportation Research Part B: Methodological, 36(3) (2002) 195-205.
[17] P.G. Gipps, A behavioural car-following model for computer simulation, Transportation Research Part B: Methodological, 15(2) (1981) 105-111.
[18] J. Erdmann, SUMO’s lane-changing model, in:  Modeling Mobility with Open Data, Springer, 2015, pp. 105-123.
[19] B. Maximcsuk, Q. Lu, T. Tettamanti, Determining Maximum Achievable Flows of Autonomous Vehicles Based on Macroscopic Fundamental Diagram, Perners Contacts, Special, (2).
[20] L. Lücken, E. Mintsis, N.P. Kallirroi, R. Alms, Y.-P. Flötteröd, D. Koutras, From automated to manual-modeling control transitions with SUMO,  (2019).
[21] E. Mintsis, D. Koutras, K. Porfyri, E. Mitsakis, L. Luecken, J. Erdmann, Y. Floetteroed, R. Alms, M. Rondinone, S. Maerivoet, Modelling, simulation and assessment of vehicle automations and automated vehicles’ driver behaviour in mixed traffic, TransAID Deliverable, 3 (2018) 1.
[22] K. Buchholz, How has the world's urban population changed from 1950 to today?, in, World Economic Forum, 2020.