نصب یک مدل رفتاری الاستوپلاستیک – ویسکوپلاستیک خاک در کد ABAQUS و اعتبارسنجی آن بر اساس نتایج آزمایشگاهی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه بوعلی سینا/همدان/ایران

2 دانشگاه بوعلی سینا

چکیده

تاکنون تلاش­ های زیادی برای مدل‌سازی رفتار مکانیکی مصالح خاکی انجام شده است. فرض آن که پیش بینی رفتار خمیری خاک در برخی از مسائل مهندسی ارتباط زیادی با زمان ساخت ندارد باعث مغفول ماندن بعد زمان در بسیاری از مدل ­های رفتاری در ژئوتکنیک شده است. این در حالی است که خرابی­ های ناشی از نشست و یا ناپایداری گودبرداری ­ها و بسیاری مسائل دیگر از این دست به دلیل رفتار خمیری تابع زمان در خاک­ ها ایجاد می­ شود. همچنین در برخی پدیده ­ها همانند انفجار، زلزله و یا تحکیم مسئله زمان به شکل ذاتی مطرح است. از این رو نصب مدل رفتاری تابع زمان در کدهای اجزاء محدود که بتواند رفتار تابع زمان سازه­ ها در مهندسی ژئوتکنیک را به طور مناسبی پیش بینی نماید دارای اهمیت زیادی است. در این پژوهش یک مدل رفتاری الاستوپلاستیک – ویسکوپلاستیک از طریق سابروتین UMAT در کد اجزا محدود ABAQUS نصب شده است. این مدل با در نظر گرفتن رفتار غیر خطی الاستوپلاستیک – ویسکوپلاستیک از طریق مکانیزم­های سخت­ شوندگی سینماتیک و همسان بخش عمده­ای از محدودیت ­های مدل­ های رفتاری که تاکنون در کد ABAQUS نصب شده ­اند را مرتفع می­ سازد. نتایج حاصل از اعتبارسنجی تحت مسیرهای آزمایشگاهی مانند خزش، آسایش تنش و اثر نرخ حاکی از ظرفیت و قابلیت بالای مدل در پیش بینی رفتار تابع زمان خاک ­ها است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Implementation of an Elastoplastic–Viscoplastic Constitutive Model of Soil in ABAQUS Code and Its Validation on Laboratory Paths

نویسندگان [English]

  • seyed mohamad hashem bathayian 1
  • Mohammd Maleki 2
1 Buali-Sina university/Hamadan/Iran
2 Faculty of Engineering Bu-Ali Sina University
چکیده [English]

Many attempts have been made to model the mechanical behavior of soil materials. The assumption that predicting soil plastic behavior in some engineering problems doesn’t present a significant relation with construction time has led to the neglect of the time effect in many constitutive models in geotechnical engineering. However, damage due to settlement or instability of excavations and many other such problems are caused by the time-dependent plasticity behavior of soil. Also, in some phenomena such as explosions, earthquakes, or consolidation, the issue of time is inherently raised. Therefore, it is important to install a time-dependent constitutive model in finite element codes that can properly predict the time-dependent behavior of structures in geotechnical engineering. In this study, an elastoplastic-viscoplastic constitutive model via UMAT subroutine was implemented in the ABAQUS finite element code. By considering the nonlinear elastoplastic-viscoplastic behavior with mixed (kinematic and isotropic) hardening mechanisms, this model removes most of the limitations of the constitutive models already installed in the ABAQUS code. The results of validation under laboratory paths such as creep, relaxation and rate effect indicate the high capacity and capability of the model in predicting the time-dependent behavior of soil.

کلیدواژه‌ها [English]

  • Constitutive models
  • Elastoplastic–Viscoplastic
  • ABAQUS
  • Soil viscosity
  • Kinematic hardening
[1] A. Casagrande, W. Shannon, Strength of soils under dynamic loads, Transactions of the american society of civil engineers, 114(1) (1949) 755-772.
[2] H. Seed, R. Lundgren, Investigation of the effect of transient loadings on the strength and deformation characteristics of saturated sands, Proceedings of the ASTM, Proceedings of the ASTM(54) (1954) 1288-1306.
[3] W. Heierli, Inelastic wave propagation in soil columns, Journal of the Soil Mechanics and Foundations Division, 88(6) (1962) 33-63.
[4] F. Tatsuoka, F. Santucci de Magistris, K. Hayano, Y. Momoya, J. Koseki, Some new aspects of time effects on the stress-strain behaviour of stiff geomaterials, The Geotechnics of Hard Soils-Soft Rocks, 2 (2000) 1285-1371.
[5] A. Chegenizadeh, M. Keramatikerman, H. Nikraz, Effect of loading strain rate on creep and stress-relaxation characteristics of sandy silt, Results in Engineering, 7 (2020) 100143.
[6] M. Bagheri, M. Rezania, M.M. Nezhad, An Experimental study of the initial volumetric strain rate effect on the creep behaviour of reconstituted clays, in:  IOP Conference Series: Earth and Environmental Science, IOP Publishing, 2015, pp. 012034.
[7] K.-H. Park, C.-K. Chung, Y.-H. Jung, State-dependent volume change during creep in engineered silty sand, Journal of Geotechnical and Geoenvironmental Engineering, 145(6) (2019) 04019020.
[8] A. Augustesen, M. Liingaard, P.V. Lade, Evaluation of time-dependent behavior of soils, International Journal of Geomechanics, 4(3) (2004) 137-156.
[9] Ł. Kaczmarek, P. Dobak, Contemporary overview of soil creep phenomenon, Contemporary Trends in Geoscience, 6 (2017).
[10] P. Perzyna, Fundamental problems in viscoplasticity, in:  Advances in applied mechanics, Elsevier, 1966, pp. 243-377.
[11] Y. Dafalias, A novel bounding surface constitutive law for the monotonic and cyclic hardening response of metals, in:  Structural mechanics in reactor technology. Vol. L, 1981.
[12] H. Ghiabi, A. Selvadurai, Time-dependent mechanical behavior of a granular medium used in laboratory investigations, International Journal of Geomechanics, 9(1) (2009) 1-8.
[13] Y.-P. Yao, L.-M. Kong, A.-N. Zhou, J.-H. Yin, Time-dependent unified hardening model: three-dimensional elastoviscoplastic constitutive model for clays, Journal of Engineering Mechanics, 141(6) (2015) 04014162.
[14] M.N. Islam, C. Gnanendran, Elastic-viscoplastic model for clays: Development, validation, and application, Journal of Engineering Mechanics, 143(10) (2017) 04017121.
[15] V.N. Kaliakin, Y.F. Dafalias, Theoretical aspects of the elastoplastic-viscoplastic bounding surface model for cohesive soils, Soils and foundations, 30(3) (1990) 11-24.
[16] V.N. Kaliakin, Y.F. Dafalias, Verification of the elastoplastic-viscoplastic bounding surface model for cohesive soils, Soils and Foundations, 30(3) (1990) 25-36.
[17] Y. Dafalias, E. Popov, A model of nonlinearly hardening materials for complex loading, Acta mechanica, 21(3) (1975) 173-192.
[18] S. Kimoto, B. Shahbodagh Khan, M. Mirjalili, F. Oka, Cyclic elastoviscoplastic constitutive model for clay considering nonlinear kinematic hardening rules and structural degradation, International Journal of Geomechanics, 15(5) (2015) A4014005.
[19] J. Jiang, H.I. Ling, V.N. Kaliakin, On a damage law for creep rupture of clays with accumulated inelastic deviatoric strain as a damage measure, Mechanics Research Communications, 83 (2017) 22-26.
[20] B. Shahbodagh, T.N. Mac, G.A. Esgandani, N. Khalili, A bounding surface viscoplasticity model for time-dependent behavior of soils including primary and tertiary creep, International Journal of Geomechanics, 20(9) (2020) 04020143.
[21] T. Mac, B. Shahbodaghkhan, N. Khalili, A constitutive model for time-dependent behavior of clay, International Journal of Geological and Environmental Engineering, 8(6) (2014) 596-601.
[22] W. Higgins, T. Chakraborty, D. Basu, A high strain‐rate constitutive model for sand and its application in finite‐element analysis of tunnels subjected to blast, International Journal for Numerical and Analytical Methods in Geomechanics, 37(15) (2013) 2590-2610.
[23] J. Maranha, C. Pereira, A. Vieira, A viscoplastic subloading soil model for rate‐dependent cyclic anisotropic structured behaviour, International Journal for Numerical and Analytical Methods in Geomechanics, 40(11) (2016) 1531-1555.
[24] Y.F. Dafalias, M.T. Manzari, Simple plasticity sand model accounting for fabric change effects, Journal of Engineering mechanics, 130(6) (2004) 622-634.
[25] F. Askarinejad, A.M. Halabian, S.H. Hashemalhosseini, New Viscoplastic Bounding Surface Subloading Model for Time-Dependent Behavior of Sands, International Journal of Geomechanics, 21(4) (2021) 04021034.
[26] J. Jiang, H.I. Ling, V.N. Kaliakin, X. Zeng, C. Hung, Evaluation of an anisotropic elastoplastic–viscoplastic bounding surface model for clays, Acta Geotechnica, 12(2) (2017) 335-348.
[27] K. Liu, S. Chen, G. Voyiadjis, Integration of anisotropic modified Cam Clay model in finite element analysis: Formulation, validation, and application, Computers and Geotechnics, 116 (2019) 103198.
[28] M. Maleki, B. Cambou, A cyclic elastoplastic-viscoplastic constitutive model for soils, Geomechanics and Geoengineering: an International Journal, 4(3) (2009) 209-220.
[29] B. Cambou, K. Jafari, K. Elamrani, An elastoplastic model for granular material using three yielding mechanism. numerical models in geomechanics. NUMOG III. Proceedings of the 3RD International Symposium Held at Niagara Falls, Canada, 8-11 May 1989, Publication of: Elsevier Applied Science Publishers Limited,  (1989) 149–167.
[30] M. Maleki, P. Dubujet, B. Cambou, Modélisation hiérarchisée du comportement des sols, Revue Française de génie civil, 4(7-8) (2000) 895-928.
[31] M. Maleki, B. Cambou, P. Dubujet, Development in modeling cyclic loading of sands based on kinematic hardening, International journal for numerical and analytical methods in geomechanics, 33(14) (2009) 1641-1658.
[32] D. Systemes, Abaqus user subroutines reference guide,  (2013).
[33] P. Hicher, Experimental study of viscoplastic mechanisms in clay under complex loading, geotechnique, 66(8) (2016) 661-669.