[1] N. Banthia, A. Biparva, S. Mindess, Permeability of concrete under stress, Cement and Concrete Research, 35(9) (2005) 1651-1655.
[2] R.K. Abu Al-Rub, B.M. Tyson, A. Yazdanbakhsh, Z. Grasley, Mechanical properties of nanocomposite cement incorporating surface-treated and untreated carbon nanotubes and carbon nanofibers, Journal of nanomechanics and micromechanics, 2(1) (2012) 1-6.
[3] J. Bharj, Experimental study on compressive strength of cement-CNT composite paste, Indian Journal of Pure & Applied Physics (IJPAP), 52(1) (2015) 35-38.
[4] T. Manzur, N. Yazdani, M.A.B. Emon, Effect of carbon nanotube size on compressive strengths of nanotube reinforced cementitious composites, Journal of Materials, 2014 (2014) 1-8.
[5] B. Han, Z. Yang, X. Shi, X. Yu, Transport properties of carbon-nanotube/cement composites, Journal of Materials Engineering and Performance, 22(1) (2013) 184-189.
[6] Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk, J.R. Potts, R.S. Ruoff, Graphene and graphene oxide: synthesis, properties, and applications, Advanced materials, 22(35) (2010) 3906-3924.
[7] S. Stankovich, D.A. Dikin, G.H. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Graphene-based composite materials, nature, 442(7100) (2006) 282-286.
[8] H. Cui, X. Yan, L. Tang, F. Xing, Possible pitfall in sample preparation for SEM analysis-A discussion of the paper “Fabrication of polycarboxylate/graphene oxide nanosheet composites by copolymerization for reinforcing and toughening cement composites” by Lv et al, Cement and Concrete Composites, 77 (2017) 81-85.
[9] Z. Pan, L. He, L. Qiu, A.H. Korayem, G. Li, J.W. Zhu, F. Collins, D. Li, W.H. Duan, M.C. Wang, Mechanical properties and microstructure of a graphene oxide–cement composite, Cement and Concrete Composites, 58 (2015)140-147.
[10] D. Lockington, J.-Y. Parlange, P. Dux, Sorptivity and the estimation of water penetration into unsaturated concrete, Materials and Structures, 32(5) (1999) 342-347.
[11] C. Zhou, General solution of hydraulic diffusivity from sorptivity test, Cement and Concrete Research, 58 (2014) 152-160.
[12] X. Li, S. Chen, Q. Xu, Y. Xu, Modeling the three-dimensional unsaturated water transport in concrete at the mesoscale, Computers & Structures, 190 (2017) 61-74.
[13] M. Eftekhari, S. Mohammadi, Multiscale dynamic fracture behavior of the carbon nanotube reinforced concrete under impact loading, International Journal of Impact Engineering, 87 (2016) 55-64.
[14] S. Bishnoi, K.L. Scrivener, µic: A new platform for modelling the hydration of cements, Cement and Concrete Research, 39(4) (2009) 266-274.
[15] C. Li, J. Zheng, X. Zhou, M. McCarthy, A numerical method for the prediction of elastic modulus of concrete, Magazine of Concrete Research, 55(6) (2003) 497-505.
[16] Y. Saez de Ibarra, J. Gaitero, E. Erkizia, I. Campillo, Atomic force microscopy and nanoindentation of cement pastes with nanotube dispersions, Physica Status solidi (a), 203(6) (2006) 1076-1081.
[17] B. Han, X. Guan, J. Ou, Application of ultrasound for preparation of carbon fiber cement-based composites, Mater. Sci. Technol, 17(3) (2009) 368-372.
[18] C. ASTM, Standard practice for making and curing concrete test specimens in the field, in, (2012).
[19] M. Naderi, Registration of Patent in Companies and industrial property Office,“Determination of concrete, stone, mortar, brick and other construction materials permeability with cylindrical chamber method.”, in, Reg, (2010), (in Persian).
[20] C. Hall, W.D. Hoff, Water transport in brick, stone and concrete, CRC Press, (2011).
[21] C. Hall, Water sorptivity of mortars and concretes: a review, Magazine of Concrete Research, 41(147) (1989)51-61.
[22] C. Leech, D. Lockington, P. Dux, Unsaturated diffusivity functions for concrete derived from NMR images, Materials and Structures, 36(6) (2003) 413-418.
[23] J. Davidson, L. Stone, D. Nielsen, M. Larue, Field measurement and use of soil‐water properties, Water Resources Research, 5(6) (1969) 1312-1321.
[24] Q. Ji, R.J.-M. Pellenq, K.J. Van Vliet, Comparison of computational water models for simulation of calcium–silicate–hydrate, Computational Materials Science, 53(1) (2012) 234-240.
[25] W. Zhang, S. Li, D. Hou, Y. Geng, S. Zhang, B. Yin, X. Li, Study on unsaturated transport of cement-based silane sol coating materials, Coatings, 9(7) (2019) 427.
[26] M.A. Qomi, K.J. Krakowiak, M. Bauchy, K.L. Stewart, R. Shahsavari, D. Jagannathan, D.B. Brommer, A. Baronnet, M.J. Buehler, S. Yip, and F.J. Ulm, Combinatorial molecular optimization of cement hydrates. Nature communications, 5(1) (2014) pp.1-10.
[27] H. Ma, D. Hou, Y. Lu, Z. Li, Two-scale modeling of the capillary network in hydrated cement paste, Construction and Building Materials, 64 (2014) 11-21.
[28] H. Ma, Z. Li, Realistic pore structure of Portland cement paste: experimental study and numerical simulation, Computers and Concrete, 11(4) (2013) 317-336.
[29] F. Montes, S. Valavala, L.M. Haselbach, A new test method for porosity measurements of portland cement pervious concrete, Journal of ASTM international, 2(1) (2005) 1-13.
[30] M. safarkhani, M. Naderi, Experimental investigation on mechanical and water transport properties of cement composites containing graphene oxide, Journal of Structural and Construction Engineering, (2020), (in persion).
[31] R. T. Cygan, J. J Liang, and A. G. Kalinichev, Molecular models of hydroxide, oxyhydroxide, and clay phases and the development of a general force field, The Journal of Physical Chemistry B 108, no. 4 (2004): 1255-1266.
[32] EN, B., Admixtures for concrete, mortar and grout-test methods-part 11: determination of air void characteristics in hardened concrete. British Standards Institution: London, UK, (2005). 480-11.