پاسخ لرزه‌ای ساختمان‌‌های بتن‌آرمه با سیستم دوگانه و پایه جداسازی ‌شده در ساختگاه نزدیک به گسل

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار گروه مهندسی عمران دانشگاه شهید مدنی آذربایجان

2 دانشگاه شهید مدنی آذربایجان

چکیده

در ساختمان‌های بتن‌آرمه بلند مرتبه استفاده از سیستم‌های جداساز می‌تواند منجر به افزایش پاسخ سازه شود که برای کنترل این مسئله افزایش سختی ساختمان با استفاده از سیستم‌های باربر جانبی مانند دیوار برشی پیشنهاد می‌شود. در مطالعه حاضر، به مقایسه پاسخ لرزه‌ای ساختمان‌های بتن‌آرمه دوگانه با پای ثابت و جداسازی شده با جداساز لاستیکی-سربی تحت رکوردهای حوزه نزدیک با استفاده از روش‌ تحلیل تاریخچه زمانی غیرخطی مطابق با ضوابط ویرایش چهارم استاندارد 2800 و آیین‌نامه ASCE/SEI 7-16 پرداخته شده است. به این منظور ساختمان‌های بتن‌آرمه 10، 15 و 20 طبقه که دارای سیستم دوگانه قاب خمشی ویژه همراه با دیوار برشی ویژه بوده و نیز در پلان مشابه و منظم هستند، به عنوان مطالعه موردی انتخاب شده‌اند. سازه 20 طبقه به عنوان سازه بلند در این مطالعه در نظر گرفته شده است. نتایج نشان دهنده آن است که پاسخ ساختمان‌های جداسازی شده شامل میانگین، میانه و صدک‌های 16% و 84% دریفت و شتاب طبقات و همچنین میانگین و بیشینه برش پایه کاهش قابل ملاحظه‌ای نسبت به ساختمان با پای ثابت بر اساس هر دو آیین‌نامه داشته است. نتایج دلالت بر آن دارند که در سازه‌های جداسازی شده نسبت به سازه‌های با پای ثابت، بر اساس آیین‌نامه ASCE نسبت به استاندارد 2800، دریفت حداکثر در سازه‌ها 23% کاهش بیشتر و شتاب و برش پایه میانگین 11% کاهش بیشتری نشان داده است. نتایج به دست آمده در این تحقیق می‌تواند مبنای توسعه ضوابط استاندارد 2800 برای بررسی پاسخ لرزه‌ای ساختمان‌های بتن‌آرمه جداسازی شده واقع شده در ساختگاه نزدیک به گسل باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Seismic Response of Base-isolated Dual-system Reinforced Concrete Buildings at a Near-fault Site

نویسندگان [English]

  • Mohammadreza Seify Asghshahr 1
  • Saeid Rafiei 2
1 Assistant Professor Department of Civil Engineering Azarbaijan Shahid Madani University
2 Azarbaijan Shahid Madani University
چکیده [English]

In high-rise reinforced concrete buildings, using base-isolating systems can increase the response of the structure. To overcome this problem, it is suggested to increase the stiffness of the building by utilizing lateral load-bearing systems such as shear walls. In the present study, the seismic response of fixed-base and lead-rubber bearing isolated dual-system reinforced concrete buildings has been compared using nonlinear time history analysis procedure according to the 2800 V4 standard and ASCE/SEI7-16 code provisions. For this purpose, 10, 15, and 20-story reinforced concrete buildings, in a similar and regular plan, with special moment frame and shear wall dual systems have been selected as a case study. A 20-story building has been considered a tall building in this study. Results show that the response of the base-isolated structures including the mean, median, and 16% and 84% percentiles of drift ratio, floor acceleration, and base shear has a significant decrease compared to the fixed-base buildings according to the above-mentioned code provisions. Results indicate that base-isolated buildings with respect to fixe-based buildings, based on the ASCE / SEI 7-16 code compared with the 2800 V4 standard, maximum drift in the structures has a 23% more decrease and mean acceleration and base shear have an 11% more decrease. The results obtained in this study can be the basis for the development of the 2800 standard provisions to investigate the seismic response of base-isolated reinforced concrete structures at a near-fault site.

کلیدواژه‌ها [English]

  • Dual-system Reinforced Concrete Buildings
  • Near-field Earthquake
  • Lead-Rubber Bearing Isolator
  • 2800 Standard V4
  • ASCE/SEI 7-16 Code
[1] F. Naeim, and J.M. Kelly, Design of Seismic Isolated Structures: From Theory to Practice, John Wiley & Sons: New York, NY, USA, (1999).
[2] Guideline for Design and Practice of Base Isolation Systems in Buildings, No. 523, Vice Presidency for Strategic Planning and Supervision, Islamic Republic of Iran, (2010) (in Persian).
[3] S. Okamoto, N. Kani, M. Higashino, N. Koshika, M. Kimizuka, M. Midorikawa and M. Iiba, Recent Developments in Seismically Isolated Buildings in Japan, Earthquake Engineering and Engineering Vibration, 1(2) (2002) 213-225.
[4] R.G. Tyler, and W.H. Robinson, High-strain tests on lead-rubber bearings for earthquake loadings, Bulletin of New Zealand National Society for Earthquake Engineering, 17(2) (1984) 90-105.
[5] M.A. Erdik, and C. Yenidogan, Comparative evaluation of design provisions for seismically isolated buildings, Soil Dynamics and Earthquake Engineering, 90 (2016) 265-286.
[6] A.B.M. Saifal, R.R. Husain, M. Jameel, and M.Z. Jumaat, Non-linear time domain analysis of base isolated multi-storey building under site specific bi-directional seismic loading, Automation in Construction, 22 (2012) 554-566.
[7] M.R. Reddy, N. Srujana, and N. Lingeshwaran, Effect of base isolation in multistoried reinforced concrete building, International Journal of Civil Engineering and Technology, 8(3) (2017) 878-887.
[8] D. Cancellara, and F. De Angelis, Assessment and dynamic nonlinear analysis of different base isolation systems for a multi-storey RC building irregular in plan, Computers and Structures, 180 (2016) 74-88.
[9] R.S. Jangid, and J.M. Kelly, Base isolation for near-fault motions, Earthquake Engineering and Structural Dynamics, 30(5) (2001) 691-707.
[10] J.F. Hall, T.H. Heaton, M.W. Halling, and D.J. Wald, Near-source ground motion and its effects on flexible buildings, Earthquake Spectra, 11(4) (1995) 569-605.
[11] R.S. Jangid, Optimum lead-rubber isolation bearings for near-fault motions, Engineering Structures, 29(10) (2007) 2503-2513.
[12] D.R. Pant, and A.C. Wijeyewickrema, Performance of base-isolated reinforced concrete buildings under bidirectional seismic excitation considering pounding with retaining walls including friction effects, Earthquake Engineering and Structural Dynamics, 43(10) (2014) 1521-1541.
[13] S. Haseli, and M. Poursha, Investigation of the seismic responses of base isolated buildings under the influence of near field ground motions, Amirkabir Journal of Civil Engineering, 50(3) (2018) 579-596 (in Persian).
[14] M. Bhandari, S.D. Bharti, M.K. Shrimali, and T.K. Datta, The numerical study of base-isolated buildings under near-field and far-field earthquakes, Journal of Earthquake Engineering, 22(6) (2018) 989-1007.
[15] C.P. Providakis, Effect of LRB isolators and supplemental viscous dampers on seismic isolated buildings under near-fault excitations, Engineering structures, 30(5) (2008) 1187-1198.
[16] F. Mazza, and A. Vulcano, Effects of near‐fault ground motions on the nonlinear dynamic response of base‐isolated rc framed buildings, Earthquake Engineering and Structural Dynamics, 41(2) (2012) 211-232.
[17] S. Mahmoud, and S. Gutub, Earthquake induced pounding-involved response of base-isolated buildings incorporating soil flexibility, Advances in Structural Engineering, 16(12) (2013) 2043-2062.
[18] S. Chimamphant, and K. Kasai, Comparative response and performance of base-isolated and fixed-base Structures, Earthquake Engineering and Structural Dynamics, 45(1) (2016) 5-27.
[19] V. Calugaru, and M. Panagiotou, Seismic response of 20-story base-isolated and fixed-base reinforced concrete structural wall buildings at a near-fault site, Earthquake Engineering and Structural Dynamics, 43(6) (2014) 927-948.
[20] S. Bhagat, and A.C. Wijeyewickrema, Seismic response evaluation of base-isolated reinforced concrete buildings under bidirectional excitation, Earthquake Engineering and Engineering Vibration, 16(2) (2017) 365-382.
[21] N. Güneş, and Z.Ç., Ulucan, Nonlinear dynamic response of a tall building to near-fault pulse-like ground motions. Bulletin of Earthquake Engineering, 17(6) (2019) 2989-3013.
[22] H. Anajafi, K. Poursadr, M. Roohi, and E. Santini-Bell, Effectiveness of seismic isolation for long-period structures subject to far-field and near-field excitations, Frontiers in Built Environment (2020) https://doi.org/10.3389/fbuil.2020.00024
[23] ASCE/SEI 7-16, Minimum Design Loads and Associated Criteria for Buildings and Other Structures, American Society of Civil Engineering, Washington, D. C, USA, (2016).
[24] NZSEE, Guideline for the Design of Seismic Isolation Systems for Buildings, New Zealand Society for Earthquake Engineering, (2019).
[25] P. Pan, D.A.N. Zamfirescu, M. Nakashima, N. Nakayasu, and H. Kashiwa, Base-isolation design practice in Japan: introduction to the post-Kobe approach, Journal of Earthquake Engineering, 9(01) (2005) 147-171.
[26] H.N. Li, and X.X. Wu, Limitations of height‐to‐width ratio for base‐isolated buildings under earthquake, The structural design of tall and special buildings, 15(3) (2006) 277-287.
[27] T. Komuro, Y. Nishikawa, Y. Kimura, and Y. Isshiki, Development and realization of base isolation system for high-rise buildings, Journal of Advanced Concrete Technology, 3(2) (2005) 233–239.
[28] R. Lagos, R. Boroschek, R. Retamales, M. Lafontaine, K. Friskel, and A. Kasalanati, Seismic isolation of the Nunoa Capital Building, the tallest base isolated building in the Americas, In Proceedings of the 16th World Conference on Earthquake Engineering, Santiago, (2017).
[29] P.M. Osgooei, M.J. Tait, and D. Konstantinidis, Seismic isolation of a shear wall structure using rectangular fiber-reinforced elastomeric isolators, Journal of Structural Engineering, 142(2) (2016) 04015116.
[30] W. Wang, A. Li, and X. Wang, Seismic performance of base-isolated precast concrete shear wall structure with AHW connections, Shock and Vibration, (2018) https://doi.org/10.1155/ 2018/963252
[31] N. Suwal, P. Warnitchai, and F. Nazam, Seismic base isolation of high-rise RC shear wall building using lead core rubber bearings, NZSEE 2020 Annual Conference, New Zealand, (2020).
[32] S. Bhagat, A.C. Wijeyewickrema, and N. Subedi, Influence of near-fault ground motions with fling-step and forward-directivity characteristics on seismic response of base-isolated buildings, Journal of Earthquake Engineering, 25(3) (2021) 455-474.
[33] F. Mazza, M. Mazza, and A. Vulcano, Base-isolation systems for the seismic retrofitting of r.c. framed buildings with soft-storey subjected to near-fault earthquakes, Soil Dynamics and Earthquake Engineering, 109 (2018) 209-221.
[34] BHRC, Iranian code of practice for seismic resistant design of buildings, Tehran: Building and Housing Research Centre, Standard No. 2800, (2014) (in Persian).
[35] INBC, Design Loads for Buildings. Tehran: Ministry of Housing and Urban Development, Iranian National Building Code, Part 6, (2013) (in Persian).
[36] ACI 318-14, Building Code Requirements for Structural Concrete and Commentary, American Concrete Institute, Washington, D. C, USA, (2014).
[37] ASCE/SEI 41-17, Seismic evaluation and retrofit of existing buildings, American Society of Civil Engineering, Washington, D. C, USA, (2017).
[38] D. Darwin, and D.A. Pecknold, Inelastic model for cyclic biaxial loading of reinforced concrete, University of Illinois Engineering Experiment Station, College of Engineering, University of Illinois at Urbana-Champaign, (1974).
[39] L. Xu, Y. Lin, and Y. Wu, Seismic response analysis of a first-story isolated reinforced concrete frame building with independent columns, Advances in Structural Engineering, 23(14) (2020) 3140-3152.
[40] M. Kikuchi, Y. Kitamura, S. Hayashi, Y. Kawashima, T. Sakaguchi, and C. Yamada, Mechanical characteristics of elastomeric seismic isolation bearings under tension, Journal of Structural and Construction Engineering (Japan), 524 (1999) 57-64.
[41] S. Yaghmaei‐Sabegh, S. Safari, and K.A. Ghayouri, Estimation of inelastic displacement ratio for base‐isolated structures, Earthquake Engineering and Structural Dynamics, 47(3) (2018) 634-659.
[42] S.K. Shahi, and J.W. Baker, An efficient algorithm to identify strong‐velocity pulses in multicomponent ground motions, Bulletin of the Seismological Society of America, 104(5) (2014) 2456-2466.
[43] Y. Cheng, and G.L. Bai, Basic characteristic parameters and influencing factors of long-period ground motion records, Journal of Vibroengineering, 19(7) (2017) 5191-5207.
[44] J.W. Baker, C.B. Haselton, N. Luco, J.P. Stewart, and R.B. Zimmerman, Updated ground motion spectral maching requirements in the 2015 NEHRP recommennded seismic provisions, 6th International Conference on Earthquake Geotechnical Engineering, Christchurch, New Zealand, (2015).
[45] UFC 3-310-01, Structural Load Data, Unified Facilities Criteria, Department of Defense, USA, (2005).