[1] M.S. Yalin, Mechanics of sediment transport, Pergamon press, Newyork, 2013.
[2] N. Fan, D. Zhong, B. Wu, E. Foufoula‐Georgiou, M. Guala, A mechanistic‐stochastic formulation of bed load particle motions: From individual particle forces to the Fokker‐Planck equation under low transport rates, Journal of Geophysical Research: Earth Surface, 119(3) (2014) 464-482.
[3] C. Ancey, Bedload transport: a walk between randomness and determinism. Part 1. The state of the art, Journal of Hydraulic Research, 58(1) (2020) 1-17.
[4] C. Ancey, Bedload transport: a walk between randomness and determinism. Part 2. Challenges and prospects, Journal of Hydraulic Research, 58(1) (2020) 18-33.
[5] D.J. Furbish, S.L. Fathel, M.W. Schmeeckle, Particle motions and bed load theory: The entrainment forms of the flux and the Exner equation, Gravel-bed Rivers: Processes and Disasters, (2016).
[6] J. Heyman, F. Mettra, H. Ma, C. Ancey, Statistics of bedload transport over steep slopes: Separation of time scales and collective motion, Geophysical Research Letters, 40(1) (2013) 128-133.
[7] A. Recking, An analysis of nonlinearity effects on bed load transport prediction, Journal of Geophysical Research: Earth Surface, 118(3) (2013) 1264-1281.
[8] J.W. Kirchner, W.E. Dietrich, F. Iseya, H. Ikeda, The variability of critical shear stress, friction angle, and grain protrusion in water‐worked sediments, Sedimentology, 37(4) (1990) 647-672.
[9] A. Shields, Application of similarity principles and turbulence research to bed-load movement, Soil Conservation Service, 1936.
[10] O. Gronz, P.H. Hiller, S. Wirtz, K. Becker, T. Iserloh, M. Seeger, C. Brings, J. Aberle, M.C. Casper, J.B. Ries, Smartstones: A small 9-axis sensor implanted in stones to track their movements, Catena, 142 (2016) 245-251.
[11] M.A. Hassan, H. Voepel, R. Schumer, G. Parker, L. Fraccarollo, Displacement characteristics of coarse fluvial bed sediment, Journal of Geophysical Research: Earth Surface, 118(1) (2013) 155-165.
[12] L. Olinde, J.P. Johnson, Using RFID and accelerometer‐embedded tracers to measure probabilities of bed load transport, step lengths, and rest times in a mountain stream, Water Resources Research, 51(9) (2015) 7572-7589.
[13] W.H. Hager, Du Boys and sediment transport, Journal of Hydraulic Research, 43(3) (2005) 227-233.
[14] S. Dey, Fluvial hydrodynamics, Springer, 2014.
[15] H.A. Einstein, Bedload transport as a probability problem, Sedimentation (reprinted in 1972). Water Resources Publications, Colorado, (1937) 105-108.
[16] H. Habersack, A. Kreisler, Sediment transport processes, in: Dating torrential processes on fans and cones, Springer, 2013, pp. 51-73.
[17] C. Ancey, P. Bohorquez, J. Heyman, Stochastic interpretation of the advection‐diffusion equation and its relevance to bed load transport, Journal of Geophysical Research: Earth Surface, 120(12) (2015) 2529-2551.
[18] C. Ancey, J. Heyman, A microstructural approach to bed load transport: mean behaviour and fluctuations of particle transport rates, Journal of Fluid Mechanics, 744 (2014) 129-168.
[19] P. Diplas, C.L. Dancey, A.O. Celik, M. Valyrakis, K. Greer, T. Akar, The role of impulse on the initiation of particle movement under turbulent flow conditions, Science, 322(5902) (2008) 717-720.
[20] D.J. Furbish, P.K. Haff, J.C. Roseberry, M.W. Schmeeckle, A probabilistic description of the bed load sediment flux: 1. Theory, Journal of Geophysical Research: Earth Surface, 117(F3) (2012).
[21] J. Heyman, P. Bohorquez, C. Ancey, Entrainment, motion, and deposition of coarse particles transported by water over a sloping mobile bed, Journal of Geophysical Research: Earth Surface, (2016).
[22] E. Lajeunesse, L. Malverti, F. Charru, Bed load transport in turbulent flow at the grain scale: Experiments and modeling, Journal of Geophysical Research: Earth Surface, 115(F4) (2010).
[23] J.C. Roseberry, M.W. Schmeeckle, D.J. Furbish, A probabilistic description of the bed load sediment flux: 2. Particle activity and motions, Journal of Geophysical Research: Earth Surface, 117(F3) (2012).
[24] J. Shim, J. Duan, Experimental and theoretical study of bed load particle velocity, Journal of Hydraulic Research, 57(1) (2019) 62-74.
[25] J. Shim, J.G. Duan, Experimental study of bed-load transport using particle motion tracking, International Journal of Sediment Research, (2016).
[26] M. Valyrakis, P. Diplas, C.L. Dancey, Entrainment of coarse grains in turbulent flows: An extreme value theory approach, Water Resources Research, 47(9) (2011).
[27] M. Valyrakis, P. Diplas, C.L. Dancey, Entrainment of coarse particles in turbulent flows: An energy approach, Journal of Geophysical Research: Earth Surface, 118(1) (2013) 42-53.
[28] M. Valyrakis, P. Diplas, C.L. Dancey, K. Greer, A.O. Celik, Role of instantaneous force magnitude and duration on particle entrainment, Journal of Geophysical Research: Earth Surface, 115(F2) (2010).
[29] J.M. Buffington, D.R. Montgomery, A systematic analysis of eight decades of incipient motion studies, with special reference to gravel‐bedded rivers, Water Resources Research, 33(8) (1997) 1993-2029.
[30] A.O. Celik, P. Diplas, C.L. Dancey, M. Valyrakis, Impulse and particle dislodgement under turbulent flow conditions, Physics of Fluids, 22(4) (2010) 046601.
[31] R. Fernandez Luque, R. Van Beek, Erosion and transport of bed-load sediment, Journal of hydraulic research, 14(2) (1976) 127-144.
[32] J. Bridge, D. Dominic, Bed load grain velocities and sediment transport rates, Water Resources Research, 20(4) (1984) 476-490.
[33] A. Keshavarzy, J. Ball, An application of image processing in the study of sediment motion, Journal of hydraulic research, 37(4) (1999) 559-576.
[34] A. Radice, S. Malavasi, F. Ballio, Solid transport measurements through image processing, Experiments in fluids, 41(5) (2006) 721-734.
[35] M. Houssais, E. Lajeunesse, Bedload transport of a bimodal sediment bed, Journal of Geophysical Research: Earth Surface, 117(F4) (2012).
[36] K. Heays, H. Friedrich, B. Melville, R. Nokes, Quantifying the dynamic evolution of graded gravel beds using particle tracking velocimetry, Journal of Hydraulic Engineering, 140(7) (2014) 04014027.
[37] Z. Wu, D. Furbish, E. Foufoula‐Georgiou, Generalization of hop distance‐time scaling and particle velocity distributions via a two‐regime formalism of bedload particle motions, Water Resources Research, 56(1) (2020) e2019WR025116.
[38] J. Shim, J.G. Duan, Experimental study of bed-load transport using particle motion tracking, International Journal of Sediment Research, 32(1) (2017) 73-81.
[39] R.L. Martin, D.J. Jerolmack, R. Schumer, The physical basis for anomalous diffusion in bed load transport, Journal of Geophysical Research: Earth Surface, 117(F1) (2012).
[40] D. Liu, M. Valyrakis, Preliminary investigation of the transport of small plastic litter along a vegetated riverbank, in: EGU General Assembly Conference Abstracts, 2017, pp. 14788.
[41] G. Maniatis, T. Hoey, R. Hodge, D. Rickenmann, A. Badoux, Inertial drag and lift forces for coarse grains on rough alluvial beds measured using in-grain accelerometers, Earth Surface Dynamics, 8(4) (2020) 1067-1099.
[42] N.-S. Cheng, A.W.-K. Law, Fluctuations of turbulent bed shear stress, Journal of engineering mechanics, 129(1) (2003) 126-130.
[43] N.-S. Cheng, Influence of shear stress fluctuation on bed particle mobility, Physics of Fluids, 18(9) (2006) 096602.
[44] H. Mouri, A. Hori, M. Takaoka, Large-scale lognormal fluctuations in turbulence velocity fields, Physics of Fluids, 21(6) (2009) 065107.
[45] E. Limpert, W.A. Stahel, M. Abbt, Log-normal distributions across the sciences: keys and clues: on the charms of statistics, and how mechanical models resembling gambling machines offer a link to a handy way to characterize log-normal distributions, which can provide deeper insight into variability and probability—normal or log-normal: that is the question, BioScience, 51(5) (2001) 341-352.
[46] W. Shih, P. Diplas, A unified approach to bed load transport description over a wide range of flow conditions via the use of conditional data treatment, Water Resources Research, 54(5) (2018) 3490-3509.
[47] C. Ancey, I. Pascal, Estimating mean bedload transport rates and their uncertainty, Journal of Geophysical Research: Earth Surface, 125(7) (2020) e2020JF005534.
[48] H. Farhadi, M. Valyrakis, Exploring particle transport dynamics at a range of flow conditions above threshold, in: Geophysical Research Abstracts, 2019.
[49] T. Pähtz, A.H. Clark, M. Valyrakis, O. Durán, The physics of sediment transport initiation, cessation, and entrainment across aeolian and fluvial environments, Reviews of Geophysics, 58(1) (2020) e2019RG000679.
[50] T. Pähtz, O. Durán, Universal friction law at granular solid-gas transition explains scaling of sediment transport load with excess fluid shear stress, Physical Review Fluids, 3(10) (2018) 104302.