ارزیابی تاریخچه انرژی ورودی تجمعی نسبی و مطلق در اثر زلزله حوزه نزدیک دارای پالس مشهود در تاریخچه شتاب با رویکرد طیف بازتاب انرژی نسبی و مطلق

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی عمران، موسسه آموزش عالی جهاددانشگاهی ، خوزستان، ایران

2 گروه مهندسی عمران، واحد آبادان، دانشگاه آزاد اسلامی، آبادان، ایران

3 گروه مهندسی عمران، واحد مهدیشهر، دانشگاه آزاد اسلامی، مهدیشهر، ایران

چکیده

مطالعات مختلفی برای ارزیابی تأثیر زلزله های نزدیک گسل با اثرات جهت­ پذیری پیش‌رونده انجام ‌گرفته است که ویژگی بارز آن وجود یک پالس با دامنه قابل ‌توجه در نگاشت سرعت است. در این مقاله در راستای بررسی اثر زلزله‌های نزدیک گسل پالس گونه بر نیازهای ارتجاعی قاب‌های خمشی فولادی، ابتدا یک مدل 15 طبقه پایه از قاب خمشی فولادی شبیه سازه شده و پس از تأیید صحت فرایند مدل‌سازی، تحت اثر 20 رکورد نزدیک به گسل دارای اثرات جهت‌پذیری پیش‌رونده و 2 رکورد دور از گسل مورد تحلیل و آنالیز قرار گرفته و رابطه بین انرژی چرخه‌ای مؤثر، ECE و پاسخ‌های تغییر مکان، سرعت و منحنی چرخه‌ای سازه SDOF در دو حالت زلزلة نزدیک و دور از گسل مورد بررسی قرار گرفت. سپس ضمن بررسی تاریخچه انرژی ورودی تجمعی نسبی و مطلق به همراه انرژی جنبشی در یک بخش و حداکثر دریفت بین طبقه‌ای برای 4 تراز مختلف رفتار غیرخطی (R=0/1, 0/2, 0/4, 0/6) در بخش دیگر، اثر تعداد مودهای بالاتر مورد ارزیابی قرار گرفت. مطالعه پروفیل دریفت بین طبقه‌ای برای دو زلزله نزدیک گسل با پالس مشهود در شتاب و بدون پالس مشهود در شتاب، نشان ‌دهندة شکل‌گیری تمرکز دریفت‌های حداکثر، IDRmax، در طبقات فوقانی برای درجات غیرخطی کم (R=0/1 و R=0/2) در رکوردهای با پالس مشهود می‌باشد که خود نیز موید تأثیر آن بر مشارکت مودهای بالاتر می‌باشد. این در حالی است که در رکوردهای فاقد پالس مشهود در شتاب، علاوه بر تشدید IDRmax در طبقات فوقانی، در طبقات تحتانی نیز نیازهای بزرگی بر سازه تحمیل می‌شود. 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation of the Relative and Absolute Cumulative Input Energy Time History under Near-Fault Earthquake with Visible Pulse in Acceleration Time History

نویسندگان [English]

  • Navid Siahpolo 1
  • Seyed Abdonnabi Razavi 2
  • Hamid Beiraghi 3
1 Department of Civil Engineering, Institute for Higher Education ACECR,, Khouzestan, Iran
2 Department of Civil Engineering, Abadan Branch, Islamic Azad University, Abadan, Iran
3 Department of Civil Engineering, Mahdishahr Branch, Islamic Azad University, Mahdishahr, Iran
چکیده [English]

The damage observed after the earthquakes in Northridge, Kobe and Chi-Chi showed the importance of evaluating the elastic and inelastic behavior of structures against near-fault earthquake. Several studies have been carried out to evaluate the impact of the near-fault earthquake with fling-step motion effects. The obvious feature of such earthquakes is the existence of a pulse with a significant amplitude in the velocity accelerograms. In this article, in order to investigate the effect of pulse-type near-fault earthquakes on the elastic demands of steel moment frames, a 15stories was simulated. After verifying the modeling process, under the influence of 20 near-field and 2 far-field records, were analyzed. The relationship between effective cyclic energy, ECE, and the displacement, velocity and hysteretic curve of SDOF systems in near- and far-fault earthquakes was evaluated. Then, studying the energy of relative and absolute cumulative input energy with kinetic energy in one section and maximum inter-story drift for 4 different levels of nonlinear behaviors (R = 1.0, 2.0, 4.0, 6.0) in the other section, the effect of higher modes was evaluated. Studying the inter-story drift profile for two near-fault earthquakes, with and without accelerated pulses, indicates the formation of the maximum drift, IDRmax, in upper stories for low nonlinear degrees (R=1.0 and R=2.0) in Records with visible pulses that verify the participation of higher modes. However, in accelerated pulse-free records, in addition to intensifying the IDRmax in the upper stories, a large-scale demand is imposed in the lower stories. In other words, in the lower stories, the first mode is mainly involved in these records.

کلیدواژه‌ها [English]

  • Near-fault earthquake
  • Pulse-type effect
  • Fling-step motion
  • Input energy
  • Higher modes
[1] G.W. Housner, Limit design of structures to resist earthquakes, in:  Proc. of 1st WCEE, 1956, pp. 5.1-5.13.
[2] H. Krawinkler, Performance assessment of steel components, Earthquake spectra, 3(1) (1987) 27-41.
[3] T. Minami, Y. Osawa, Elastic‐plastic response spectra for different hysteretic rules, Earthquake engineering & structural dynamics, 16(4) (1988) 555-568.
[4] Y.-J. Park, A.-S. Ang, Y.-K. Wen, Seismic damage analysis and damage-limiting design of RC buildings, University of Illinois Engineering Experiment Station, 1984.
[5] J.M. Tembulkar, J.M. Nau, Inelastic modeling and seismic energy dissipation, Journal of Structural Engineering, 113(6) (1987) 1373-1377.
[6] C.M. Uang, V.V. Bertero, Evaluation of seismic energy in structures, Earthquake Engineering & Structural Dynamics, 19(1) (1990) 77-90.
[7] Y. Chai, P. Fajfar, A procedure for estimating input energy spectra for seismic design, Journal of Earthquake Engineering, 4(04) (2000) 539-561.
[8] C.C. Chou, C.M. Uang, Establishing absorbed energy spectra—an attenuation approach, Earthquake Engineering & Structural Dynamics, 29(10) (2000) 1441-1455.
[9] L.D. Decanini, F. Mollaioli, An energy-based methodology for the assessment of seismic demand, Soil Dynamics and Earthquake Engineering, 21(2) (2001) 113-137.
[10] R. Riddell, J.E. Garcia, Hysteretic energy spectrum and damage control, Earthquake Engineering & Structural Dynamics, 30(12) (2001) 1791-1816.
[11] C.C. Chou, C.M. Uang, A procedure for evaluating seismic energy demand of framed structures, Earthquake Engineering & Structural Dynamics, 32(2) (2003) 229-244.
[12] S. Leelataviwat, S.C. Goel, B. Stojadinović, Energy-based seismic design of structures using yield mechanism and target drift, Journal of Structural Engineering, 128(8) (2002) 1046-1054.
[13] E. Kalkan, S.K. Kunnath, Effects of fling step and forward directivity on seismic response of buildings, Earthquake spectra, 22(2) (2006) 367-390.
[14] F. McKenna, OpenSees: a framework for earthquake engineering simulation, Computing in Science & Engineering, 13(4) (2011) 58-66.
[15] R. Vahdani, M. Gerami, M.A. Vaseghi Nia, Structural damping and displacement ductility effects on input energy spectrum of earthquake, Journal of Structural and Construction Engineering, 5(2) (2018) 5-21.
[16] N. Siahpolo, The effect of near-field earthquake on seismic demands of SMRFs with MDOFʼs and higher modes considerations, Dissertation, Semnan University, Semnan, Iran, 2015.
[17] S.A. Razavi, N. Siahpolo, M. Mahdavi Adeli, The Effects of Period and Nonlinearity on Energy Demands of MDOF and E-SDOF Systems under Pulse-Type Near-Fault Earthquake Records, Scientia Iranica,  (2020).
[18] S.A. Razavi, N. Siahpolo, M. Mahdavi Adeli, A New Empirical Correlation for Estimation of EBF Steel Frame Behavior Factor under Near-Fault Earthquakes Using the Genetic Algorithm, Journal of Engineering, 2020 (2020).
[19] C. Fang, Q. Zhong, W. Wang, S. Hu, C. Qiu, Peak and residual responses of steel moment-resisting and braced frames under pulse-like near-fault earthquakes, Engineering Structures, 177 (2018) 579-597.
[20] L. Xin, X. Li, Z. Zhang, L. Zhao, Seismic behavior of long-span concrete-filled steel tubular arch bridge subjected to near-fault fling-step motions, Engineering Structures, 180 (2019) 148-159.
[21] V.V. Bertero, R. Herrera, S. Mahin, Establishment of design earthquakes—Evaluation of present methods, in:  Proc., Int. Symp. on Earthquake Structural Engineering, Univ. of Missouri-Rolla Rolla, Mo., 1976, pp. 551-580.
[22] C. Csi, Analysis reference manual for SAP2000, ETABS, and SAFE, Computers and Structures, Berkeley, California, USA,  (2016).
[23] A. ANSI, AISC 360-10, Chicago, IL,  (2010).
[24] J.W. Baker, Quantitative classification of near-fault ground motions using wavelet analysis, Bulletin of the Seismological Society of America, 97(5) (2007) 1486-1501.
[25] A. Gupta, H. Krawinkler, Seismic demands for the performance evaluation of steel moment resisting frame structures, Stanford University, 1998.
[26] E. Kalkan, Prediction of seismic demands in building structures, University of California, Davis, 2006.
[27] P. Fajfar, T. Vidic, Consistent inelastic design spectra: hysteretic and input energy, Earthquake Engineering & Structural Dynamics, 23(5) (1994) 523-537.
[28] S. Kunnath, Y. Chai, Cumulative damage‐based inelastic cyclic demand spectrum, Earthquake engineering & structural dynamics, 33(4) (2004) 499-520.
[29] A. Teran-Gilmore, J.O. Jirsa, A damage model for practical seismic design that accounts for low cycle fatigue, Earthquake spectra, 21(3) (2005) 803-832.