[1] SYNER-G. "D8.10 - Guidelines for deriving seismic fragility functions of elements at risk: Buildings, lifelines, transportation networks and critical facilities." (2013).
[2] MR, HAZUS-MH. "Multi-hazard loss estimation methodology: Earthquake model." Department of Homeland Security, FEMA, Washington, DC (2003).Porter, Keith. "Beginner’s guide to fragility, vulnerability, and risk." Encyclopedia of earthquake engineering (2015): 235-260.
[3] Bhargava, Kapilesh, A. K. Ghosh, and S. Ramanujam. "Seismic response and fragility analysis of a water storage structure." Nuclear engineering and design 235.14 (2005): 1481-1501.
[4] Razzaghi, M. S., and S. Eshghi. "Development of analytical fragility curves for cylindrical steel oil tanks." Proccedings of the 14 Th World Conference on Earthquake Engineering. (2008).
[5] Berahman, Farshad, and Farhad Behnamfar. "Probabilistic seismic demand model and fragility estimates for critical failure modes of un-anchored steel storage tanks in petroleum complexes." Probabilistic Engineering Mechanics 24.4 (2009): 527-536.
[6] Razzaghi, Mehran S., and Alireza Mohebbi. "Predicting the seismic performance of cylindrical steel tanks using artificial neural networks (ann)." Acta Polytechnica Hungarica 8.2 (2011).
[7] Colombo, J. I., and J. L. Almazán. "Seismic fragility curves for legged wine storage tanks with a novel isolation device." Procedia engineering 199 (2017): 564-569.
[8] Yazdabad, Mohammad, Farhad Behnamfar, and Abdolreza K. Samani. "Seismic behavioral fragility curves of concrete cylindrical water tanks for sloshing, cracking, and wall bending." Earthquakes and Structures 14.2 (2018): 95-102.
[9] Hajimehrabi, Hossein, et al. "Fragility curves for baffled concrete cylindrical liquid-storage tanks." Soil Dynamics and Earthquake Engineering 119 (2019): 187-195.
[10] ACI Committee 350.3-06, "Seismic Design of Liquid-Containing Concrete Structures and Commentary" , Farmington Hills (MI,USA), American Concrete Institute, 2006.
[11] Technical Assistant, Office of Research and Technical Criteria, Planning and Budget Organization, "Criteria and Criteria for Designing and Calculating Groundwater Reservoirs", Review 123, 2015
[12] Munshi, J.A., "Design of Liquid-Containing Concrete Structures for Earthquake
Forces. " Portland Cement, USA, )2002(.
[13] Ru-deng, L. U. O. "Values of shear transfer coefficients of concrete element Solid65 in Ansys [J]." Journal of Jiangsu University (Natural Science Edition) 2 (2008): 018.
[14] Vasudevan, G., S. Kothandaraman, and S. Azhagarsamy. "Study on non-linear flexural behavior of reinforced concrete beams using ANSYS by discrete reinforcement modeling." Strength of materials 45.2 (2013): 231-241.
[15] Eads, Laura, et al. "An efficient method for estimating the collapse risk of structures in seismic regions." Earthquake Engineering & Structural Dynamics 42.1 (2013): 25-41.
[16] Wells, Donald L., and Kevin J. Coppersmith. "New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement." Bulletin of the seismological Society of America 84.4 (1994): 974-1002.
[17] Tehran Engineering and Engineering Consulting Organization Geotechnical and Resistance Materials Research Center, Department of Surface and Subsurface Studies, "Tehran Geotechnical Zoning Report" (2017).
[18] Vamvatsikos, Dimitrios, and C. Allin Cornell. Seismic performance, capacity and reliability of structures as seen through incremental dynamic analysis. Diss. Stanford University, 2002.
[19] Moslemi, M., and M. R. Kianoush. "Parametric study on dynamic behavior of cylindrical ground-supported tanks." Engineering Structures 42 (2012): 214-230.
[20] Baker, Jack W. "Efficient analytical fragility function fitting using dynamic structural analysis." Earthquake Spectra 31.1 (2015): 579-599.