[1] ATC-40; Seismic Evaluation and Retrofit of Concrete Buildings; Applied Technology Council, Report No. SSC 96-01, 1996.
[2] ASCE-41-17. "ASCE Standard, ASCE/SEI, 41–17: Seismic Evaluation and Retrofit of Existing Buildings." Reston, VA: American Society of Civil Engineers, 2017.
[3] National Technical and Executive System, “Instruction for Seismic Rehabilitation of Existing Buildings”, No. 360, First Revision, Plan and Budget Organization, 2014. (In Persian)
[4] Tahouni, Sh. and Ahmadi, F., “Seismic evaluation of the reinforced concrete buildings of the Standard 2800 based on performance-based design”, Nama, 2006. (In Persian)
[5] Danesh Ashtiyani, F. and Dorvash, S., “Comparing Standard 2800 and Instruction for Seismic Rehabilitation criteria for moment frame and shear wall buildings.” 1st International Congress on Seismic Retrofitting, Tehran, Iran, 2006. (In Persian)
[6] Tehranizadeh, M. and Pahlavani Yali, A., “Evaluation of Tall Steel Structures with Dual System (SMRF&RC Shear Wall) in Near-Field Ground Motions by Performance Based Design Method.”, Amirkabir Journal of Civil Engineering, 42(2), 85-94, 2010. (In Persian)
[7] Kheirodin, A. and Family, S.,” Seismic Evaluation of Concrete Moment Frames with Low Height Beams.” Modares Civil Engineering journal, 10(1), 2010. (In Persian)
[8] Fajfar, P., “Capacity spectrum method based on inelastic demand spectra”; The 12th WCEE Proceedings, Auckland, New Zealand, 2000.
[9] Aschheim, M., “Yield Point Spectra: A simple alternative to the capacity spectrum method”, Advanced Technology in Structural Engineering, Proceedings of Structures Congress, ASCE, 2000.
[10] FEMA-273; NEHRP Guidelines for the Seismic Rehabilitation of Buildings, Federal Emergency Management Agency, Washington, D.C., October, 1997.
[11] Aschheime, M., Black, P. “Yield point spectra for seismic design and rehabilitation”; The 12th WCEE Proceedings, Auckland, New Zealand, 2000.
[12] Aschheim, M., Montez, E., “The representation of P-∆ effects using Yield Point Spectra” ; Engineering Structures, Vol. 25, 2003, pp. 1387-1396.
[13] Naji, A; Irani, F. “P-∆ effects in steel structures using Yield Point Spectra”; Advanced Materials Research Vol 255-260, May 2011.
[14] Tjhin, T., Aschheim, M., “Yield displacement-based seismic design of RC wall buildings”; Engineering Structures, Vol. 29, 2007, pp. 2946-2959.
[15] Vamvatsikos, M., Aschheim, M., “Performance-based seismic design via yield frequency spectra”; Earthquake Engineering & Structural Dynamics, 45(11), 1759-1778 2016.
[16] Georgoussis GK., “Yield Displacements of Wall-Frame Concrete Structures and Seismic Design Based on Code Performance Objectives”, Journal of Earthquake Engineering, Oct 13:1-13, 2018.
[17] Hernández-Montes, E., and Aschheim, M.A., "A seismic design procedure for moment-frame structures." Journal of Earthquake Engineering, 23(9), 1584-1603, 2019.
[18] Zhang, Y., Shen, J. & Chen, J. Damage-based yield point spectra for sequence-type ground motions. Bulletin of Earthquake Engineering, Vol. 18, 4705–4724, 2020. https://doi.org/10.1007/s10518-020-00874-4
[19] Iranian Building Codes and Standards, Iranian Code of Practice for Seismic Resistant Design of Buildings, Standard No.2800, 4th Edition, 2014. (In Persian)
[20] Nassar, A., Krawinkler, H.,”Seismic design based on strength and ductility demand”, The 10th WCEE Proceedings, Madrid, Spain, 1992.
[21] Iranian National Building Code, Part 6th, Design Loads for Buildings, 2013. (In Persian)
[22] Iranian National Building Code, Part 9th, Design and Construction of Reinforced Concrete Buildings, 2013. (In Persian)
[23] Vidic T, Fajfar P, Fischinger M., “Consistent inelastic design spectra: strength and displacement”, Earthquake Engineering & Structural Dynamics, 23(5):507-21, May 1994.
[24] Parkash, V., Powell, GH. “DRAIN-2DX User Guide (Version 1.02) “; A Computer Program Distributed By NISEE; Department of Civil Engineering; University of California; Berkeley.