[1] V. Ivanov, J. Chu, Applications of microorganisms to geotechnical engineering for bioclogging and biocementation of soil in situ, Reviews in Environmental Science and Bio/Technology, 7(2) (2008) 139-153.
[2] S. Stocks-Fischer, J.K. Galinat, S.S. Bang, Microbiological precipitation of CaCO3, Soil Biology and Biochemistry, 31(11) (1999) 1563-1571.
[3] H.L. Ehrlich, Microbes and metals, Applied Microbiology and Biotechnology, 48(6) (1997) 687-692.
[4] L. Cheng, M.A. Shahin, D. Mujah, Influence of key environmental conditions on microbially induced cementation for soil stabilization, Journal of Geotechnical and Geoenvironmental Engineering, 143(04016083-1-04016083-11) (2016).
[5] G. Xu, Y. Tang, J. Lian, Y. Yan, D. Fu, Mineralization Process of Biocemented Sand and Impact of Bacteria and Calcium Ions Concentrations on Crystal Morphology, Advances in Materials Science and Engineering, 2017 (2017).
[6] K. Todar, Nutrition and growth of bacteria, (2013).
[7] J.M. Martinko, M.T. Madigan, Brock biology of microorganisms, International Microbiology, 8(2) (2005).
[8] H. Rong, C.X. Qian, L.Z. Li, Influence of molding process on mechanical properties of sandstone cemented by microbe cement, Construction and Building Materials, 28(1) (2012) 238-243.
[9] L. Cheng, R. Cord-Ruwisch, In situ soil cementation with ureolytic bacteria by surface percolation, Ecological Engineering, 42 (2012) 64-72.
[10] M.B. Burbank, T.J. Weaver, T.L. Green, B.C. Williams, R.L. Crawford, Precipitation of calcite by indigenous microorganisms to strengthen liquefiable soils, Geomicrobiology Journal, 28(4) (2011) 301-312.
[11] L.A. van Paassen, R. Ghose, T.J. van der Linden, W.R. van der Star, M.C. van Loosdrecht, Quantifying biomediated ground improvement by ureolysis: large-scale biogrout experiment, Journal of geotechnical and geoenvironmental engineering, 136(12) (2010) 1721-1728.
[12] Q. Zhao, L. Li, C. Li, M. Li, F. Amini, H. Zhang, Factors affecting improvement of engineering properties of MICP-treated soil catalyzed by bacteria and urease, Journal of Materials in Civil Engineering, 26(12) (2014) 04014094.
[13] K. Feng, B.M. Montoya, Influence of confinement and cementation level on the behavior of microbial-induced calcite precipitated sands under monotonic drained loading, Journal of Geotechnical and Geoenvironmental Engineering, 142(1) (2015) 04015057.
[14] V.S. Whiffin, Microbial CaCO3 precipitation for the production of biocement Doctoral dissertation, Murdoch University, (2004).
[15] M.Y. Jung, B.S. Park, J. Lee, M.K. Oh, Engineered Enterobacter aerogenes for efficient utilization of sugarcane molasses in 2, 3-butanediol production, Bioresource technology, 139 (2013) 21-27.
[16] R. Boopathy, J. Manning, C.F. Kulpa, A laboratory study of the bioremediation of 2, 4, 6-trinitrotoluene-contaminated soil using aerobic/anoxic soil slurry reactor, Water environment research, 70(1) (1998) 80-86.
[17] Y. Fujita, J.L. Taylor, T.L. Gresham, M.E. Delwiche, F.S. Colwell, T.L. McLing, R.W. Smith, Stimulation of microbial urea hydrolysis in groundwater to enhance calcite precipitation, Environmental science & technology, 42(8) (2008) 3025-3032.
[18] A.B. Cunningham, R.R. Sharp, R. Hiebert, G. James, Subsurface biofilm barriers for the containment and remediation of contaminated groundwater, Bioremediation Journal, 7(3-4) (2003) 151-164.
[19] L. Cheng, M.A. Shahin, R. Cord-Ruwisch, Surface percolation for soil improvement by biocementation utilizing In Situ enriched Indigenous aerobic and anaerobic ureolytic soil microorganisms, Geomicrobiology journal, 34(6) (2017) 546-556.
[20] D. Gat, Z. Ronen, M. Tsesarsky, Long-term sustainability of microbial-induced CaCO3 precipitation in aqueous media, Chemosphere, 184(524-531) (2017).
[21] S.L. Williams, M.J. Kirisits, R.D. Ferron, Optimization of growth medium for Sporosarcina pasteurii in bio-based cement pastes to mitigate delay in hydration kinetics, Journal of industrial microbiology & biotechnology, 43(4) (2016) 567-575.
[22] S.A. Nasehi, A. Uromeihy, M.R. Nikudel, A. Morsali, Influence of gas oil contamination on geotechnical properties of fine and coarse-grained soils, Geotechnical and Geological Engineering, 34(1) (2016) 333-345.
[23] H. Ghasemzadeh, M. Tabaiyan, The effect of diesel fuel pollution on the efficiency of soil stabilization method, Geotechnical and Geological Engineering, 35(1) (2017) 475-484.
[24] M. Al-Aghbari, R. Dutta, Y. Mohamedzeini, Effect of diesel and gasoline on the properties of sands—a comparative study, International Journal of Geotechnical Engineering, 5(1) (2011) 61-68.
[25] ASTM-D422-63, e2 Standard Test Method for Particle-Size Analysis of Soils (Withdrawn 2016), (2007).
[26] J. Stevens, Unified soil classification system. Civil Engineering, ASCE, 52(12) (1982) 61-62.
[27] S. Bibi, M. Oualha, M.Y. Ashfaq, M.T. Suleiman, N. Zouari, Isolation, differentiation and biodiversity of ureolytic bacteria of Qatari soil and their potential in microbially induced calcite precipitation (MICP) for soil stabilization, RSC Advances, 8(11) (2018) 5854-5863.
[28] H.A. Keykha, A. Asadi, M. Zareian, Environmental factors affecting the compressive strength of microbiologically induced calcite precipitation-treated soil, Geomicrobiology Journal, 34(10) (2017) 889-894.
[29] L. Cheng, M.A. Shahin, Stabilisation of oil-contaminated soils using microbially induced calcite crystals by bacterial flocs, Géotechnique Letters, (2017) 1-6.
[30] ASTM-D2166, American Society for Testing and Materials D2166 (1999) Standard test method for unconfined compressive strength of cohesive soils. Annual Books of ASTM Standards., (1999).
[31] ASTM-D5084, 16a Standard Test Methods for Measurement of Hydraulic Conductivity of Saturated Porous Materials Using a Flexible Wall Permeameter.
[32] M.G. Gomez, C.M. Graddy, J.T. DeJong, D.C. Nelson, M. Tsesarsky, Stimulation of Native Microorganisms for Biocementation in Samples Recovered from Field-Scale Treatment Depths, Journal of Geotechnical and Geoenvironmental Engineering, 144(1) (2017) 04017098.
[33] D.J. Tobler, M.O. Cuthbert, V.R. Phoenix, Transport of Sporosarcina pasteurii in sandstone and its significance for subsurface engineering technologies, Applied geochemistry, 42 (2014) 38-44.
[34] T.J. Weaver, M. Burbank, A. Lewis, R. Lewis, R. Crawford, B. Williams, Bio-induced calcite, iron, and manganese precipitation for geotechnical engineering applications, Advances in Geotechnical Engineering (2011) 3975-3983.
[35] M.P. Harkes, L.A. Van Paassen, J.L. Booster, V.S. Whiffin, M.C. van Loosdrecht, Fixation and distribution of bacterial activity in sand to induce carbonate precipitation for ground reinforcement, Ecological Engineering, 36(2) (2010) 112-117.
[36] L. Cheng, R. Cord-Ruwisch, M.A. Shahin, Cementation of sand soil by microbially induced calcite precipitation at various degrees of saturation, Canadian Geotechnical Journal, 50(1) (2013) 81-90.
[37] J. Chu, V. Ivanov, V. Stabnikov, B. Li, Microbial method for construction of an aquaculture pond in sand, (2013).
[38] N. Jiang, K. Soga, The applicability of microbially induced calcite precipitation (MICP) for internal erosion control in gravel–sand mixtures, (2016).
[39] J. Chu, V. Stabnikov, V. Ivanov, Microbially induced calcium carbonate precipitation on surface or in the bulk of soil, Geomicrobiology Journal, 29(6) (2012) 544-549.
[40] S.G. Choi, J. Chu, R.C. Brown, K. Wang, Z. Wen, Sustainable Biocement Production via Microbially Induced Calcium Carbonate Precipitation: Use of Limestone and Acetic Acid Derived from Pyrolysis of Lignocellulosic Biomass, ACS Sustainable Chemistry & Engineering, 5(6) (2017) 5183-5190.
[41] E. Salifu, E. MacLachlan, K.R. Iyer, C.W. Knapp, A. Tarantino, Application of microbially induced calcite precipitation in erosion mitigation and stabilisation of sandy soil foreshore slopes: a preliminary investigation, Engineering Geology, 201 (2016) 96-105.
[42] M. Mirmohammad sadeghi, A.R. Modarresnia, F. Shafiei, Parameters effects evaluation of microbial strengthening of sandy soils in mixing experiments using taguchi methodology, Geomicrobiology Journal, 32(5) (2015) 453-465.
[43] F. Kalantary, M. Kahani, Optimization of the biological soil improvement procedure, International Journal of Environmental Science and Technology, 1-10 (2018).
[44] L. Dobereiner, M.D. Freitas, Geotechnical properties of weak sandstones, Geotechnique, 36(1) (1986) 79-94.
[45] C.G. Dyke, L. Dobereiner, Evaluating the strength and deformability of sandstones, (1991).
[46] J.S. Kahn, The analysis and distribution of the properties of packing in sand-size sediments: 1. On the measurement of packing in sandstones, The journal of Geology, 64(4) (1956) 385-395.
[47] F.J. Pettijohn, P.E. Potter, R. Siever, Sand and Sandstone Springer, New York, NY, 1972.
[48] A. Cheshomi, S. Mansouri, M.A. Amoozegar, Improving the Shear Strength of Quartz Sand using the Microbial Method, Geomicrobiology Journal, (2018) 1-8.
[49] M. Azadi, M. Ghayoomi, N. Shamskia, H. Kalantari, Physical and mechanical properties of reconstructed bio-cemented sand, Soils and Foundations, 57(5) (2017) 698-706.
[50] C.W. Chou, E.A. Seagren, A.H. Aydilek, M. Lai, Biocalcification of sand through ureolysis, Journal of Geotechnical and Geoenvironmental Engineering, 137(12) (2011) 1179-1189.
[51] H. Canakci, W. Sidik, I.H. Kilic, Effect of bacterial calcium carbonate precipitation on compressibility and shear strength of organic soil, Soils and Foundations, 55(5) (2015) 1211-1221.
[52] M.R. Coop, J.H. Atkinson, The mechanics of cemented carbonate sands, Geotechnique, 43(1) (1993) 53-67.
[53] L.M.M. Costa, G.M. Olyveira, R. Salomão, Precipitated Calcium Carbonate Nano-Microparticles: Applications in Drug Delivery, Adv Tissue Eng Regen Med Open Access, 3(2) (2017) 00059.
[54] L.N. Plummer, E. Busenberg, The solubilities of calcite, aragonite and vaterite in CO2-H2O solutions between 0 and 90 C, and an evaluation of the aqueous model for the system CaCO3-CO2-H2O, Geochimica et cosmochimica acta, 46(6) (1982) 1011-1040.
[55] H. Lu, H. Lutz, S.J. Roeters, M.A. Hood, A. Schäfer, R. Muñoz-Espí, R. Berger, M. Bonn, T. Weidner, Calcium-Induced Molecular Rearrangement of Peptide Folds Enables Biomineralization of Vaterite Calcium Carbonate, Journal of the American Chemical Society, 140(8) (2018) 2793-2796.
[56] N. Nassif, N. Gehrke, N. Pinna, N. Shirshova, K. Tauer, M. Antonietti, H. Cölfen, Synthesis of stable aragonite superstructures by a biomimetic crystallization pathway, Angewandte Chemie International Edition, 44(37) (2005) 6004-6009.
[57] S. Al-Thawadi, R. Cord-Ruwisch, Calcium carbonate crystals formation by ureolytic bacteria isolated from Australian soil and sludge, Journal of Advanced Science and Engineering Research, 2(1) (2012) 12-26.
[58] W. Sun, S. Jayaraman, W. Chen, K.A. Persson, G. Ceder, Nucleation of metastable aragonite CaCO3 in seawater, Proceedings of the National Academy of Sciences, (2015) 201423898.
[59] M. Zeng, Y.Y. Kim, C. Anduix-Canto, C. Frontera, D. Laundy, N. Kapur, H.K. Christenson, F.C. Meldrum, Confinement generates single-crystal aragonite rods at room temperature, Proceedings of the National Academy of Sciences, 115(30) (2018) 7670-7675.
[60] Y. Xu, N.A. Sommerdijk, Aragonite formation in confinements: A step toward understanding polymorph control, Proceedings of the National Academy of Sciences, 115(34) (2018) 8469-8471.
[61] A. Richter, D. Petzold, H. Hofmann, B. Ullrich, Production, properties and application of calcium carbonate powders. 3. Investigations to the transition of vaterite and aragonite in aqueous systems, Chemische Technik, 48(5) (1996) 271-275.
[62] G.T. Zhou, Y.F. Zheng, Chemical synthesis of CaCO3 minerals at low temperatures and implication for mechanism of polymorphic transition, Neues Jahrbuch für Mineralogie-Abhandlungen, (2001) 323-343.