تحلیل هزینه‌ی چرخه‌ی عمر تصمیمات تعمیر و ‌نگه‌داری با استفاده از خروجی مدل پیش‌بینی مارکوف بر مبنای اطلاعات ماشین اندازه‌گیر خط راه‌آهن

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده مهندسی عمران و محیط زیست دانشگاه صنعتی امیرکبیر،تهران،ایران

2 دانشکده مهندسی عمران، دانشگاه صنعتی شریف، تهران، ایران

3 دانشکده مهندسی عمران و محیط زیست، دانشگاه صنعتی امیرکبیر، تهران، ایران

چکیده

سیستم حمل‌ونقل ریلی نقش مهم و حیاتی در توسعه اقتصاد کشورها دارد. این سیستم در طول زمان‌ بر اساس بهره‌برداری و شرایط آب و هوایی فرسوده می‌شود و به تعمیر و ‌نگه‌داری نیاز دارد. یکی از اهداف این عملیات، ‌نگه‌داری خطوط در یک وضعیت قابل‌قبول و جلوگیری از انحراف بیش‌ازحد آن‌ها نسبت به وضعیت مطلوب است. در راه‌آهن سامانه مدیریت تعمیر و ‌نگه‌داری خط آهن جهت بهینه کردن فعالیت‌ها و کاهش هزینه‌های مرتبط با آن‌ها مطالعه و پیاده‌سازی ‌‌شده‌است. چنین سامانه‌هایی برای پیش‌بینی وضعیت آتی خرابی، از تکنیک‌های مختلفی استفاده کرده‌اند. انتخاب بهترین سیاست تعمیر و ‌نگه‌داری هدف این سامانه‌ها است. برای ‌‌این‌که سیاست اتخاذی، بهترین و مقرون‌به‌صرفه‌‌ترین انتخاب باشد، نیاز است که تحلیل هزینه دوره عمر صورت پذیرد. در ادامه به کمک مدل ‌پیش‌بینی زوال مارکوف پیشین، مدل هزینه دوره عمر برای بالاست و ریل به عنوان اجزای نگران کننده پیشنهاد می‌شود. در انتها مشخص شد که هزینه‌های اصلی در بخش بالاست مربوط به هزینه نوسازی بالاست و عدم در دسترس بودن خط است. همانگونه که مشاهده شد کمترین هزینه دوره عمر بالاست در بازه تناژ 100 تا 150 میلیون تن ناخالص رخ می‌دهد. در این مطالعه با فرض تناژ سالیانه (16 میلیون تن ناخالص) که پیشتر عنوان شد، نتیجه می‌شود که عمر نوسازی بالاست حدودا 6 تا 10 سال است. این عدد برای ریل 500 تا 540 میلیون تن ناخالص است که معادل 30 تا 35 سال است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Life cycle cost analysis (LCCA) of railway tracks maintenance decisions using the Markov forecast model based on the track recording machine data

نویسندگان [English]

  • Seyed Elyas Hashemian 1
  • Yousef Shafahi 2
  • Fereydoon Moghaddasnezhad 3
1 Dept of Civil Engineering, Transportation & Highway group,PhD .Amirkabir University of Technology - Tehran Polytechnic
2 Department of Civil Engineering, Sharif University of Technology
3 Department of Civil Engineering, Amirkabir University of Technology
چکیده [English]

Rail transportation system plays an important role in the development of the economies of the countries. This system will be worn over time by operation and weather conditions and will require maintenance. One of the goals of this operation is to keep the tracks in an acceptable condition and prevent their excessive deviation from the optimal situation. Railways maintenance and repair management system has been studied and implemented to optimize activities and reduce related costs. Such systems have used various techniques to predict the future state of failure. Choosing the best maintenance policy is the goal of these systems. For policymaking, the best and most cost-effective option, life-cycle cost analysis is required. In the following, with help of the Markov prediction model, the life cycle cost (LCC) model is suggested for rail and ballast. In the end, it was found that the main costs in the ballast part are renewal costs and the track unavailability costs. The effect of renewal tonnage on these two costs is far higher than other costs. As you can see, the lowest ballast life cycle cost in the range of 100 to 150 million gross tons. In this study, assuming annual tonnage (16 million gross tonnages) as previously mentioned, it results in a renewal life of about 6 to 10 years. This value for the rails is from 500 to 540 million gross tons, which is equivalent to 30 to 35 years.

کلیدواژه‌ها [English]

  • Life Cycle Cost
  • Quality index
  • Rail and ballast
  • Markov Predication Model
  • Railway Infrastructure
[1] A. Zoeteman, C. Esveld, Evaluating track structures: life cycle cost analysis as a structured approach, in:  World Congress on Railway Research, Tokyo, 1999.
[2] K. Tzanakakis, The railway track and its long term behaviour: a handbook for a railway track of high quality, Springer Science & Business Media, 2013.
[3] A. Tjan, D. Pitaloka, Future prediction of pavement condition using Markov probability transition matrix, in:  Proceedings of the Eastern Asia Society for Transportation Studies, Citeseer, 2005, pp. 772-782.
[4] H. Ghadamnan, s. Ataei, The prediction of rail tracks Irregularity  using data mining techniques, in:  13th Conference and 6th International Exhibition of Rail Transport Achievements, Iran, 2007, pp. (In Persian).
[5] Y.-J. Zhang, M.H. Murray, L. Ferreira, Modelling rail track performance: an integrated approach, Transport Journal,  (2000) 187-194.
[6] I.A. Khouy, H. Schunnesson, U. Juntti, A. Nissen, P.-O. Larsson-Kråik, Evaluation of track geometry maintenance for a heavy haul railroad in Sweden: a case study, Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 228(5) (2014) 496-503.
[7] S. Kumar, A study of the rail degradation process to predict rail breaks, Luleå tekniska universitet, 2006.
[8] A.S. Suiker, R. de Borst, A numerical model for the cyclic deterioration of railway tracks, International journal for numerical methods in engineering, 57(4) (2003) 441-470.
[9] B.M. Ayyub, Uncertainty modeling and analysis in civil engineering, CRC Press, 1997.
[10] Y. Shafahi, R. Hakhamaneshi, Application of a maintenance management model for Iranian railways based on the Markov chain and probabilistic dynamic programming,  (2009).
[11] D. Prescott, J. Andrews, Investigating railway track asset management using a Markov analysis, Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 229(4) (2015) 402-416.
[12] M. Davidian, Nonlinear models for repeated measurement data, Routledge, 2017.
[13] Y. Shafahi, M. Rasooli, A neuro networks model to predict future track condition, in:  6th International Conference on Civil Engineering, 2001.
[14] A.R. Andrade, P.F. Teixeira, Statistical modelling of railway track geometry degradation using Hierarchical Bayesian models, Reliability Engineering & System Safety, 142 (2015) 169-183.
[15] S. Jovanovic, H. Guler, B. Coko, Track degradation analysis in the scope of railway infrastructure maintenance management systems, Gradevinar, 67(3) (2015) 247-257.
[16] M. Yousefikia, S. Moridpour, S. Setunge, E. Mazloumi, Modeling degradation of tracks for maintenance planning on a tram line, Journal of Traffic and Logistic Engineering, 2(2) (2014).
[17] A.P. Patra, P. Söderholm, U. Kumar, Uncertainty estimation in railway track life-cycle cost: a case study from Swedish National Rail Administration, Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 223(3) (2009) 285-293.
[18] M. Fathali, F. Nejad, M. Esmaeili, Life cycle cost analysis in railway engineering from maintenance management point of view, Department of technical installations and infrastructure, Islamic Republic of Iran Railways Research and Training Center, 2015.(In Persian).
[19] A.P. Patra, Maintenance decision support models for railway infrastructure using RAMS & LCC analyses, Luleå tekniska universitet, 2009.
[20] A. Nissen, Development of life cycle cost model and analyses for railway switches and crossings, Luleå tekniska universitet, 2009.
[22] Railways of the Islamic Republic of Iran,Statistical Yearbook of Rail Transport, 2015.(In Persian).
[23] s.m. MahmoudiFard, Providing a quality index for Iran's railways, Sharif University of Technology, 2008.(In Persian).
[24] S.E. Hashemian, Y. Shafahi, Investigating Effect of sand dunes on the quality of rail lines using data measured for railway tracks (Case Study: Kerman-Bam-Bafgh), in:  10th National Congress on Civil Engineering, Tehran, Iran, 2017.(In Persian).
[25] J.L. Bogdanoff, F. Kozin, J.L. Bogdanoff, Probabilistic models of cumulative damage, Wiley New York etc., 1985.
[26] R. Fletcher, M.J. Powell, A rapidly convergent descent method for minimization, The computer journal, 6(2) (1963) 163-168.
[27] J. Zhao, A.H.C. Chan, C. Roberts, A.B. Stirling, Assessing the Economic Life of Rail Using a Stochastic Analysis of Failures, Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 220(2) (2006) 103-111.
[28] A. Zoeteman, Railway design and maintenance from a life-cycle cost perspective: A decision-support approach, 2004.