[1] D. P. Solomatine, A. Ostfeld, Data-driven modelling: some past experiences and new approaches, Journal of hydro informatics, 10(1) (2008) 3-22.
[2] N. Khairuddin, A.Z. Aris, A. Elshafie, T. Sheikhy Narany, M.Y. Ishak, N.M. Isa, Efficient forecasting model technique for river stream flow in tropical environment. Urban Water Journal, 16(3) (2019) 183-192.
[3] H. Tongal, M. J. Booij, M, Simulation and forecasting of stream flows using machine learning models coupled with base flow separation, Journal of hydrology, 564 (2018) 266-282.
[4] D. Hussain, A.A. Khan, A, Machine learning techniques for monthly river flow forecasting of Hunza River, Pakistan, Earth Science Informatics, (2020) 1-11.
[5] V. Nourani, A. H. Baghanam, J. Adamowski, O. Kisi, Applications of hybrid wavelet–artificial intelligence models in hydrology: a review, Journal of Hydrology, 514 (2014) 358-377.
[6] N. Nourani, A. Davanlou Tajbakhsh, A. Molajou, H. Gokcekus, Hybrid wavelet-M5 model tree for rainfall-runoff modeling, Journal of Hydrologic Engineering, 24(5) (2019) 04019012.
[7] Y. Sun, J. Niu, B. Sivakumar, A comparative study of models for short-term streamflow forecasting with emphasis on wavelet-based approach. Stochastic Environmental Research and Risk Assessment, 33(10) (2019) 1875-1891.
[8] K. Roushangara, R. Ghasempourb, Monthly precipitation prediction improving using the integrated model based on kernel-wavelet and complementary ensemble empirical mode decomposition, CEEJ (XML). In Persian.
[9] A. D. Mehr, An improved gene expression programming model for streamflow forecasting in intermittent streams, Journal of hydrology, 563 (2018) 669-678.
[10] M. Rezaie-Balf, S. Fani Nowbandegani, S. Z. Samadi, H. Fallah, S. Alaghmand, An ensemble decomposition-based artificial intelligence approach for daily streamflow prediction. Water, 11(4) (2019) 709.
[11] F. J. Chang, P. A. Chen, Y. R. Lu, E. Huang, K. Y. Chang, Real-time multi-step-ahead water level forecasting by recurrent neural networks for urban flood control, Journal of Hydrology, 517 (2014) 836-846.
[12] S. Kabir, S. Patidar, G. Pender, Investigating capabilities of machine learning techniques in forecasting stream flow, In Proceedings of the Institution of Civil Engineers-Water Management, 173 (2) (2020) 69- 86.
[13] R. Noori, A. Farokhnia, S. Morid, H. Riahi Madvar, (2009). Effect of input variables preprocessing in artificial neural network on monthly flow prediction by PCA and wavelet transformation, Journal of Water and Wastewater, (1) (2009) 13-22. In Persian.
[14] M.R. Najafi, H. Moradkhani, T. C. Piechota, Ensemble streamflow prediction: climate signal weighting methods vs. climate forecast system reanalysis, Journal of Hydrology, 442 (2012) 105-116.
[15] C. Prieto, N. Le Vine, D. Kavetski, E. García, R. Medina, Flow prediction in ungauged catchments using probabilistic Random Forests regionalization and new statistical adequacy tests, Water Resources Research, 55(5) (2019) 4364-4392.
[16] H.A. Afan, M.F. Allawi, A. El-Shafie, Z.M. Yaseen, A.N. Ahmed, M.A. Malek, A. Sefelnasr, Input attributes optimization using the feasibility of genetic nature inspired algorithm: Application of river flow forecasting, Scientific Reports, 10(1) (2020) 1-15.
[17] R. Noori, A.R. Karbassi, A. Moghaddamnia, D. Han, M.H. Zokaei-Ashtiani, A. Farokhnia, M.G. Gousheh, Assessment of input variables determination on the SVM model performance using PCA, Gamma test, and forward selection techniques for monthly stream flow prediction, Journal of Hydrology, 401(3-4) (2011) 177-189.
[18] Y. Hassanzadeh, K. A. Abdi, N. M. Shafiei, S. Khoshtinat, Daily streamflow forecasting of Nooranchay river using the yybrid model of Artificial Neural Networks-Principal Component Analysis, Journal of Soil and Water Science, 25 (3) (2015) 53- 63. In Persian.
[19] M. Ehteram, H.A Afan, M. Dianatikhah, A. N. Ahmed, C. Ming Fai, M. S. Hossain, A. Elshafie, Assessing the predictability of an improved ANFIS model for monthly streamflow using lagged climate indices as predictors, Water, 11 (6) (2019) 1130.
[20] L. Diop, A. Bodian, K. Djaman, Z. M. Yaseen, R.C. Deo, A. El-Shafie, L. C. Brown, The influence of climatic inputs on stream-flow pattern forecasting: case study of Upper Senegal River, Environmental Earth Sciences, 77(5) (2018) 182.
[21] S.J. Hadi, M. Tombul, (2018). Monthly streamflow forecasting using continuous wavelet and multi-gene genetic programming combination, Journal of Hydrology, 561 (2018) 674-687.
[22] R. M. Adnan, Z. Liang, S. Heddam, M. Zounemat-Kermani, O. Kisi, B. Li, Least square support vector machine and multivariate adaptive regression splines for streamflow prediction in mountainous basin using hydro-meteorological data as inputs, Journal of Hydrology, 586 (2020) 124371.
[23] M. Motamednia, A. Nohegar, A. Malekian, M. Saberi Anari, K. Karimi Zarchi, Impacts of combining meteorological and hydrometric data on the accuracy of streamflow modeling, Environmental Resources Research, 7(2) (2019) 147-164.
[24] Y-F. Sang, A review on the applications of wavelet transform in hydrology time series analysis, Atmospheric Research, 122 (2012) 8-15.
[25] S. Mallat, A wavelet tour of signal processing: the sparse way 3rd edn, New York: Academic, (2008).
[26] L. Breiman, Random forests. Machine learning, 45(1) (2001) 5-32.
[27] H. Abdi, L. J. Williams, Principal component analysis, Wiley interdisciplinary reviews: computational statistics, 2(4) (2010) 433-459.
[28] F. Anctil, M.H. Ramos, Verification Metrics for Hydrological Ensemble Forecasts, Handbook of Hydro Meteorological Ensemble Forecasting, (2019) 893-922
[29] C. J. Willmott, on the validation of models, Physical geography, 2(2) (1981) 184-194.
[30] B. G. Tabachnick, L. S. Fidell, Experimental designs using ANOVA, Belmont, CA: Thomson/Brooks/Cole, (2007).