[1] L. Qiu, S. Yuan, C. Boller, An adaptive guided wave-Gaussian mixture model for damage monitoring under time-varying conditions: Validation in a full-scale aircraft fatigue test, Structural health monitoring, 16(5) (2017) 501-517.
[2] P. Liu, H.J. Lim, S. Yang, H. Sohn, C.H. Lee, Y. Yi, D. Kim, J. Jung, I.-h. Bae, Development of a “stick-and-detect” wireless sensor node for fatigue crack detection, Structural Health Monitoring, 16(2) (2017) 153-163.
[3] J. Xu, Z. Fu, Q. Han, G. Lacidogna, A. Carpinteri, Micro-cracking monitoring and fracture evaluation for crumb rubber concrete based on acoustic emission techniques, Structural Health Monitoring, 17(4) (2018) 946-958.
[4] D. Reagan, A. Sabato, C. Niezrecki, Feasibility of using digital image correlation for unmanned aerial vehicle structural health monitoring of bridges, Structural Health Monitoring, 17(5) (2018) 1056-1072.
[5] W.-H. Hu, S. Said, R.G. Rohrmann, Á. Cunha, J. Teng, Continuous dynamic monitoring of a prestressed concrete bridge based on strain, inclination and crack measurements over a 14-year span, Structural Health Monitoring, 17(5) (2018) 1073-1094.
[6] H. Kim, E. Ahn, M. Shin, S.-H. Sim, Crack and noncrack classification from concrete surface images using machine learning, Structural Health Monitoring, 18(3) (2019) 725-738.
[7] J. Valença, D. Dias-da-Costa, E. Júlio, H. Araújo, H. Costa, Automatic crack monitoring using photogrammetry and image processing, Measurement, 46(1) (2013) 433-441.
[8] D. Dias‐da‐Costa, J. Valença, E. Júlio, H. Araújo, Crack propagation monitoring using an image deformation approach, Structural Control and Health Monitoring, 24(10) (2017) e1973.
[9] T.-H. Yi, H.-N. Li, M. Gu, Experimental assessment of high-rate GPS receivers for deformation monitoring of bridge, Measurement, 46(1) (2013) 420-432.
[10] A. Mohan, S. Poobal, Crack detection using image processing: A critical review and analysis, Alexandria Engineering Journal, 57(2) (2018) 787-798.
[11] J.-K. Oh, G. Jang, S. Oh, J.H. Lee, B.-J. Yi, Y.S. Moon, J.S. Lee, Y. Choi, Bridge inspection robot system with machine vision, Automation in Construction, 18(7) (2009) 929-941.
[12] N.-D. Hoang, Q.-L. Nguyen, A novel method for asphalt pavement crack classification based on image processing and machine learning, Engineering with Computers, 35(2) (2019) 487-498
[13] Goodfellow, Y. Bengio, A. Courville, Deep learning, MIT press, 2016.
[14] N. Dwivedi, D.K. Singh, Review of Deep Learning Techniques for Gender Classification in Images, in: Harmony Search and Nature Inspired Optimization Algorithms, Springer, 2019, pp. 1089-1099.
[15] M. Shariati, N.H. Ramli-Sulong, M.M.A. KH, P. Shafigh, H. Sinaei, Assessing the strength of reinforced concrete structures through Ultrasonic Pulse Velocity and Schmidt Rebound Hammer tests, Scientific Research and Essays, 6(1) (2011) 213-220.
[16] M. Hamidian, A. Shariati, M.A. Khanouki, H. Sinaei, A. Toghroli, K. Nouri, Application of Schmidt rebound hammer and ultrasonic pulse velocity techniques for structural health monitoring, Scientific Research and Essays, 7(21) (2012) 1997-2001.
[17] S. Alam, A. Loukili, F. Grondin, E. Rozière, Use of the digital image correlation and acoustic emission technique to study the effect of structural size on cracking of reinforced concrete, Engineering Fracture Mechanics, 143 (2015) 17-31.
[18] J. Valença, I. Puente, E. Júlio, H. González-Jorge, P. Arias-Sánchez, Assessment of cracks on concrete bridges using image processing supported by laser scanning survey, Construction and Building Materials, 146 (2017) 668-678.
[19] M.S. Kaseko, S.G. Ritchie, A neural network-based methodology for pavement crack detection and classification, Transportation Research Part C: Emerging Technologies, 1(4) (1993) 275-291.
[20] Z. Liu, S.A. Suandi, T. Ohashi, T. Ejima, Tunnel crack detection and classification system based on image processing, in: Machine Vision Applications in Industrial Inspection X, International Society for Optics and Photonics, 2002, pp. 145-152.
[21] H. Moon, J. Kim, Intelligent crack detecting algorithm on the concrete crack image using neural network, Proceedings of the 28th ISARC, (2011) 1461-1467.
[22] H. Nhat-Duc, Q.-L. Nguyen, V.-D. Tran, Automatic recognition of asphalt pavement cracks using metaheuristic optimized edge detection algorithms and convolution neural network, Automation in Construction, 94 (2018) 203-213.
[23] E.J. Willemse, D.D. Pollard, On the orientation and patterns of wing cracks and solution surfaces at the tips of a sliding flaw or fault, Journal of Geophysical Research: Solid Earth, 103(B2) (1998) 2427-2438.
[24] K. Ohno, M. Ohtsu, Crack classification in concrete based on acoustic emission, Construction and Building Materials, 24(12) (2010) 2339-2346.
[25] A. Cubero-Fernandez, F.J. Rodriguez-Lozano, R. Villatoro, J. Olivares, J.M. Palomares, Efficient pavement crack detection and classification, EURASIP Journal on Image and Video Processing, 2017(1) (2017) 39.
[26] K. Chen, A. Yadav, A. Khan, Y. Meng, K.J.M. Zhu, S.i. Engineering, Improved Crack Detection and Recognition Based on Convolutional Neural Network, 2019 (2019).
[27] M. Peppa, J. Hall, J. Goodyear, J. Mills, Photogrammetric assessment and comparison of DJI Phantom 4 pro and phantom 4 RTK small unmanned aircraft systems, ISPRS Geospatial Week 2019, (2019).
[28] Y. Xie, L. Ning, M. Wang, C. Li, Image enhancement based on histogram equalization, in: Journal of Physics: Conference Series, IOP Publishing, 2019, pp. 012161.
[29] M.W. Gardner, S. Dorling, Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences, Atmospheric environment, 32(14-15) (1998) 2627-2636.
[30] A.A.M. Al-Saffar, H. Tao, M.A. Talab, Review of deep convolution neural network in image classification, in: 2017 International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications (ICRAMET), IEEE, 2017, pp. 26-31.
[31] T. Suzuki, H. Kudo, Image Correction in Emission Tomography Using Deep Convolution Neural Network, in: ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, 2019, pp. 3667-3671.
[32] M.T. McCann, K.H. Jin, M. Unser, Convolutional neural networks for inverse problems in imaging: A review, IEEE Signal Processing Magazine, 34(6) (2017) 85-95.
[33] D. Scherer, A. Müller, S. Behnke, Evaluation of pooling operations in convolutional architectures for object recognition, in: International conference on artificial neural networks, Springer, 2010, pp. 92-101.
[34] K. He, X. Zhang, S. Ren, J. Sun, Spatial pyramid pooling in deep convolutional networks for visual recognition, IEEE transactions on pattern analysis and machine intelligence, 37(9) (2015) 1904-1916.
[35] A. Santoro, D. Raposo, D.G. Barrett, M. Malinowski, R. Pascanu, P. Battaglia, T. Lillicrap, A simple neural network module for relational reasoning, in: Advances in neural information processing systems, 2017, pp. 4967-4976.
[36] V. Romanuke, Appropriate number and allocation of ReLUs in convolutional neural networks, Naukovi Visti NTUU KPI, (1) (2017) 69-78.
[37] W. Liu, Y. Wen, Z. Yu, M. Yang, Large-margin softmax loss for convolutional neural networks, in: ICML, 2016, pp. 7.
[38] S. Ioffe, C. Szegedy, Batch normalization: Accelerating deep network training by reducing internal covariate shift, arXiv preprint arXiv:1502.03167, (2015).
[39] Y.D. Chun, N.C. Kim, I.H. Jang, Content-based image retrieval using multiresolution color and texture features, IEEE Transactions on Multimedia, 10(6) (2008) 1073-1084.
[40] W. Nawaz, S. Ahmed, A. Tahir, H.A. Khan, Classification of breast cancer histology images using alexnet, in: International Conference Image Analysis and Recognition, Springer, 2018, pp. 869-876.
[41] M.-K. Kim, Contactless Palmprint Identification Using the Pretrained VGGNet Model, Journal of Korea Multimedia Society, 21(12) (2018) 1439-1447.
[42] M. Al-Qizwini, I. Barjasteh, H. Al-Qassab, H. Radha, Deep learning algorithm for autonomous driving using googlenet, in: 2017 IEEE Intelligent Vehicles Symposium (IV), IEEE, 2017, pp. 89-96.