تحلیل قابلیت اطمینان سازه‌ی قاب خمشی فولادی تحت اثر برخورد وسیله‌ی نقلیه‌ی سبک

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه مهندسی عمران، واحد مشهد، دانشگاه آزاد اسلامی، مشهد، ایران

چکیده

ضربه‌ی ناشی از برخورد وسایل نقلیه به ستون‌­های خارجی ساختمان­‌ها، یکی از سناریوهای تحقیقاتی برخورد می‌­باشد. به این ‌منظور، در این تحقیق، تحلیل قابلیت اطمینان سازه‌­ی قاب خمشی فولادی 2 طبقه­ تحت اثر ضربه‌­ی ناشی از برخورد وسیله­‌ی نقلیه­‌ی سبک، با در نظر گرفتن عدم قطعیت‌­ در مصالح و بارهای اعمالی، با استفاده از روش­‌های مبتنی بر شبیه‌­سازی انجام گرفته است. سازه‌­­ی مذکور به صورت دو ­بعدی در نرم‌­افزارOpenSees  مدل‌سازی گردیده و تحلیل حساسیت متغیرهای تصادفی مورد مطالعه با استفاده از روش شبیه­‌سازی مونت‌کارلو به کمک نرم‌­افزارMatlab  انجام ‌شده است. سپس توابع شرایط حدی بر مبنای حداکثر دوران مجاز تیر دهانه­‌ی آسیب ­دیده ارائه گردیده است. در نهایت، احتمال خرابی و شاخص قابلیت اطمینان قاب مذکور در سطوح عملکردی مختلف تحت اثر ضربه­‌ی ناشی از برخورد وسیله­‌ی نقلیه­‌ی سبک با سرعت‌­های برخورد 20، 40، 60 و 80 کیلومتر بر ساعت بررسی و مقایسه شده است. نتایج نشان داد که در سازه­‌ی مورد مطالعه، متغیرهای تصادفی جرم و سرعت وسیله­‌ی نقلیه و مقاومت تسلیم مصالح، تأثیرگذارترین متغیرها در احتمال خرابی بوده و روش شبیه‌سازی زیرمجموعه‌­ای بر مبنای تکنیک متغیر کنترل نسبت به روش مونت‌کارلو، با تعداد نمونه­‌ی کمتر و زمان اجرای کوتاه‌­تر، احتمال خرابی را با خطای قابل قبولی تخمین زده است

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Reliability Analysis of Steel Moment-Resisting Frame Structure under the Light Vehicle Collision

نویسندگان [English]

  • Abbasali Sadeghi
  • Hamid Kazemi
  • Maysam Samadi
Department of Civil Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran
چکیده [English]

The Impact induced by vehicles collision to external buildings' columns is one of the research scenarios of collision. Therefore, in this study, the reliability analysis of steel moment-resisting frame structure with 2-story has been conducted under the impact of light vehicle collision considering uncertainty in material and applied loads using simulation-­based methods. The mentioned structure is modeled in OpenSees software two-dimensionally and the sensitivity analysis of the studied random variables is performed using Monte Carlo simulation-based method in Matlab software. Then, the limit state functions are proposed based on the maximum permitted beam rotation of the damaged bay. Finally, the failure probability and reliability index of the mentioned frame is investigated and compared according to performance levels under the impact of a light vehicle collision with speeds 20, 40, 60, and 80 Km­/­h. The results showed that the random variables such as mass and velocity of vehicle and yield strength of material were the most influential in the failure probability and the control variates-based subset simulation method compared to Monte Carlo method estimated the failure probability with a permissible error rate, less sample number, and short running duration.

کلیدواژه‌ها [English]

  • Reliability
  • Steel moment-resisting frame
  • Light vehicle collision
  • Simulation-based methods
  • Sensitivity analysis
1.Mehdizadeh, A. Sadeghi, and S. V. Hashemi, The Performance Investigation of Steel Moment Frames with Knee Braces subjected to Vehicle Collision, Journal of Structural and Construction Engineering, (2019). (In Persian).
2.G. Zhao, and T. Ono, Moment methods for structural reliability, Structural Safety, 23(1) (2001) 47-75.
3.SEI/ASCE 7-05, minimum design loads for buildings and other structures. Washington DC: American Society of Civil Engineers, (2005).
4.M. Adam, F. Parisi, J. Sagaseta, and X. Lu, Research and practice on progressive collapse and robustness of building structures in the 21st century, Engineering Structures, 173 (2018) 122-149.
5.Kiakojouri, V. De Biagi, B. Chiaia, and M. R. Sheidai, Progressive collapse of framed building structures: Current knowledge and future prospects, Engineering Structures, 206­ (2020).
6.Kim, J. Park, and T. Lee, Sensitivity analysis of steel buildings subjected to column loss, Engineering Structures, 33(2) (2011) 421-432.
7.Szyniszewski, and T. Krauthammer, Energy flow in progressive collapse of steel framed buildings, Engineering Structures, 42 (2012) 142-153.
8.Sharma, S. Hurlebaus, and P. Gardoni, Performance-based response evaluation of reinforced concrete columns subject to vehicle impact, International Journal of Impact Engineering, 43 (2012) 52-62.
9.R. Tavakoli, and A.A. Rashidi Alashti, Evaluation of progressive collapse potential of multi-story moment resisting steel frame buildings under lateral loading, Sharif University of Technology, Scientia Iranica, 20(1) (2013) 77-86.
10.Kim and H. Kang, Progressive Collapse of Steel Moment Frames Subjected to Vehicle Impact, Journal of Performance of Constructed Facilities, 29(6) (2015).
11.H. Chung, J. Lee, and J. Ho Gil, Structural performance evaluation of a precast prefabricated bridge column under vehicle impact loading, Structure and Infrastructure Engineering Maintenance, Management, Life-Cycle Design and Performance, 10(6) (2014) 777-791.
12.Jiříček, and M. Foglar, Numerical analysis of a bridge pier subjected to truck impact, Structural Concrete, 17(6) (2016) 936-946.
13.Kim, and H. Kang, Response of a steel column-footing connection subjected to vehicle impact, Structural Engineering and Mechanics, 63(1) (2017) 125-136.
14.A. Hadianfard, S. Malekpour, and M. Momeni, Reliability analysis of H-section steel columns under blast loading, Structural Safety, 75 (2018) 45-56.
15.M. Javidan, H. Kang, D. Isobe, and J. Kim, Computationally efficient framework for probabilistic collapse analysis of structures under extreme actions, Engineering Structures, 17(2) (2018) 440-452.
16.Zhao, J. Qian, and J. Wang, Performance of bridge structures under heavy goods vehicle impact, Computers and Concrete, 22(6) (2018) 515-525.
17.Stewart, Reliability-based load factor design model for explosive blast loading, Structural Safety, 71 (2018) 13-23.
18.F. Santos, A. Santiago, M. Latour, and G. Rizzano, Robustness analysis of steel frames subjected to vehicle collisions, Structures, 25 (2020) 930-942.
19.Kim, J. Kim, and J. Park, Investigation of progressive collapse-resisting capability of steel moment frames using push-down analysis, Journal of Performance of Constructed Facilities, 23(5) (2009) 27-35.
20.Kim, S. Lee, and H. Choi, Progressive collapse resisting capacity of moment frames with viscous dampers. The Structural Design of Tall Special Buildings, 22(5) (2013) 399-414.
21.Feng, 3D nonlinear dynamic progressive collapse analysis of multi-storey steel composite frame buildings — Parametric study, Engineering Structures, 32(2) (2010) 3974-3980.
22.Stewart, Reliability-based load factors for air blast and structural reliability of reinforced concrete columns for protective structures, Structure and Infrastructure Engineering, 15(5) (2019) 634-646.
23.OpenSees, Open System for Earthquake Engineering Simulation Manual, Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA, (2007). http://opensees.berkeley.edu.
24.MATLAB (matrix laboratory), Multi paradigm numerical computing environment and proprietary programming language developed by Math Works, (2013). https://www.mathworks.com/help/matlab/
25.El Hajj Chehade, and R. Younes, Structural reliability software and calculation tools: a review, Innovative Infrastructure Solutions. 5(29) (2020).
26.Ramon Gaxiola-Camacho, H. Azizsoltani, A. Haldar, S. M. Vazirizade, and F. Javier Villegas-Mercado, Chapter 13 - Novel concepts for reliability analysis of dynamic structural systems, Handbook of Probabilistic Models, Butterworth-Heinemann, (2020) 305-346.
27.A. Cornell, A probability based structural code, Journal Proceedings, ACI, 66(12) (1969) 974-985.
28.Fiessler, H. J. Neumann, and R. Rackwitz, Quadratic limit states in structural reliability, Journal of the Engineering Mechanics Division, 105(4) (1979) 661-674.
29.Breitung, Asymptotic approximations for multinormal integrals, Journal of Engineering Mechanics, 110(3) (1984) 357-366.
30.Saravani, and B. Keshtegar, Random - weighted Monte Carlo Simulation Method for Structural Reliability Analysis, Computational Methods in Engineering Isfahan University of Technology (IUT), 37(2) (2019) 41-60. (in Persian).
31.Fiessler, R. Rackwitz, and H.J. Neumann, Quadratic Limit States in Structural Reliability, Journal of the Engineering Mechanics Division, 105(4) (1979) 661-676.
32. Metropolis, and S. Ulam, the Monte Carlo Method, Journal of the American Statistical Association, 44(247) (1949) 335-341.
33.Keshtegar, and P. Hao, Enriched self-adjusted performance measure approach for reliability-based design optimization of complex engineering problems, Applied Mathematical Modelling, 57 (2018) 37–51.
34.Rashki, Hybrid control variates-based simulation method for structural reliability analysis of some problems with low failure probability, Applied Mathematical Modelling, 60 (2018) 220-234.
35.Azarkish, and M. Rashki, Reliability and reliability-based sensitivity analysis of shell and tube heat exchangers using Monte Carlo simulation. Applied Thermal Engineering, 159 (2019).
36.E. Melchers, Structural reliability analysis and prediction, John Wiley & Sons, Chichester, (1999).
37.Rakhshanimehr, M. Rashki, M. Miri, and M. Azhdari Moghaddam, Reliability Analysis of Flexural Steel Frames by Using the Weighted Simulation Method and Radial Basis Function Interpolation. Journal of Modeling in Engineering, 14(47) (2017) 21-32.
38.Ibrahim, Observations on applications of importance sampling in structural reliability analysis, Structural Safety, 9(4) (1991) 269-281.
39.Echard, N. Gayton, A. Bignonnet, A reliability analysis method for fatigue design, International Journal of Fatigue, 59 (2014) 292-300.
40.Behnam rad, and H. Shariatmadar, Subset Simulation Method in Active Structural Control, Journal of Modeling in Engineering, 16(53) (2018) 279-288. (In Persian).
41.MiarNaeimi, G. Azizyan and M. Rashki, Reliability sensitivity analysis method based on subset simulation hybrid techniques, Applied Mathematical Modelling, 75 (2019) 607-626.
42.Z. Lu, S. F. Song, Z. F. Yue, and J. Wang, Reliability sensitivity method by line sampling, Structural Safety, 30(6) (2008) 517-532.
43.INBC, Design Loads for Buildings. Tehran: Ministry of Housing and Urban Development, Iranian National Building Code, Part 6, (2013) (in Persian).
44.INBC, Design and Construction of Steel Structures. Tehran: Ministry of Housing and Urban Development, Iranian National Building Code, Part 10, (2013) (in Persian).
45.BHRC, Iranian code of practice for seismic resistant design of buildings, Tehran: Building and Housing Research Centre, Standard No. 2800, (2014) (in Persian).
46.ETABS-Three Dimensional Analysis of Building Systems. Manual, Computers and Structures Inc., Berkeley, California, (2016). https://www.csiamerica.com/
47.K. Chopra, Dynamics of Structures, Theory and applications to Earthquake Engineering. Higher Education Press, Beijing, (2007).
48.CEN (European Committee for Standardization), Eurocode 1: actions on structures, part 1–7: general actions – accidental actions. Brussels, (2006).
49.Mestrovic, D. Cizmar, and L. Miculinic, Reliability of Concrete Columns under Vehicle Impact, Journal of WIT Transactions on The Built Environment, 98 (2008) 157-165.
50.Z. Georgiev, Impact Force Calculator, (2020). https://www.gigacalculator.com/calculators/impact-force-calculator.php.
51.Sabouri, and S. R. Asad Sajadi, Experimental Investigation of Force Modification Factor and Energy Absorption Ductile Steel Plate Shear Walls with Stiffeners and without Stiffener, Journal of Structure and Steel, 4(3) (2008) 13-25.
52.ATC-24, Guidelines for Cyclic Seismic Testing of Components of Steel Structures, Applied Technology Council, California, U.S.A. (1992).
53.Ellingwood, TV. Galambos, JG. MacGregor, and CA. Cornell, Development of a probability based load criterion for American National Standard A58 – building code requirement for minimum design loads in buildings and other structures, Washington, DC: National Bureau of Standards, Dept. of Commerce; (1980).
54.JCSS (Joint Committee on Structural Safety), Probabilistic model code; (2001).
55.CEN (European Committee for Standardization). EN 10034:1993. Structural steel I and H sections – tolerances on shape and dimensions. Brussels; (1993).
56.Zhang, J. Liu, Y. Yan, and M. Pandey, An Effective Approach for Reliability-Based Sensitivity Analysis with the Principle of Maximum Entropy and Fractional Moments, Entropy, 21(7) (2019).
57.Conrath, T. Krauthammer, KA, Marchand, and PF. Mlakar, Structural design for physical security – state of the practice. New York: ASCE; (1999).
58.E. Melchers, and M. A. Ahammed, fast approximate method for parameter sensitivity estimation in Monte Carlo structural reliability, Computers & Structures, 82(1) (2004) 55-61.
59.Karamchandani, and C. A. Cornell, Sensitivity estimation with first and second order reliability method, Structural Safety, 11(1) (1991) 59-74.
60.T. Wu, and S. Mohanty, Variable screening and ranking using sampling-based sensitivity measures, Reliability Engineering & System Safety, 91(6) (2006) 634-647.
61.Pouraminian, S. Pourbakhshian, and M. Moahammad Hosseini, Reliability analysis of Pole Kheshti historical arch bridge under service loads using SFEM, Journal of Building Pathology and Rehabilitation, 4(21) (2019).
62.Pouraminian, S. Pourbakhshian, E. Noroozinejad Farsangi, S. Berenji, S. Keyani Borujeni, M. Moosavi Asl, and M. Moahammad Hosseini, Reliability-Based Safety Evaluation of the BISTOON Historic Masonry Arch Bridge, Civil And Environmental Engineering Reports 1(30) (2020) 87-110.