ارزیابی و تخمین ضریب رفتار قاب‌های فولادی تحت زلزله‌های متوالی بحرانی با استفاده از شبکه‌ عصبی مصنوعی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده مهندسی عمران - دانشگاه علم و صنعت ایران - تهران - ایران

2 دانشکده مهندسی عمران- دانشگاه تفرش- تفرش- ایران

چکیده

سازه‌های مستقر در ﻣﻨﺎﻃﻖ ﻓﻌﺎل ﻟﺮزه‌ای اﻏﻠﺐ در ﻣﻌﺮض زلزله‌های متوالی ﻗﺮار دارﻧﺪ که لرزه­ها با شدت قابل‌ملاحظه در مدت‌زمان کوتاهی پس از یکدیگر رخ می­دهند. بررسی‌های انجام‌ شده بر گستره وسیعی از پاسخ‌‌های سازه­ تحت توالی لرزه‌ای از جمله خسارت، شکل‌پذیری، جابه‌جایی و ضریب رفتار حاکی از آن است که لرزه‌های متوالی بسته به ‌شدت، اثر‌های قابل‌توجهی بر نیازهای مختلف سازه می‌گذارند. ﺿﺮﯾﺐ رﻓﺘﺎر به ‌عنوان ﯾﮑﯽ از ﭘﺎراﻣﺘﺮﻫﺎی قابل‌توجه در ﺑﺮرﺳﯽ رﻓﺘﺎر ﺳﺎزه، نیروی‌های جانبی زلزله را کاهش داده و ﺳﺎزه با تحمل ﺗﻐﯿﯿﺮﺷﮑﻞﻫﺎی غیرارتجاعی، ﻣﻘﺪار زﯾﺎدی اﻧﺮژی زﻟﺰﻟﻪ را ﺟﺬب ﮐﺮده ﮐﺎﻫﺶ پیدا کرده و سازه‌ها برای نیروی کمتری نسبت به مقداری که رفتار ارتجاعی در سازه ایجاد می‌کند، طراحی می‌شوند. با توجه به پتانسیل خسارت زایی لرزه­های متوالی و اهمیت پارامتر ضریب رفتار در عملکرد سازه، این مقاله به محاسبه و تخمین این پارامتر در قاب­های فولادی در معرض زلزله­های متوالی بحرانی می­پردازد. در این راستا، قاب­های خمشی فولادی 3، 7 و 11 طبقه مطابق ضوابط آئین‌نامه‌های لرزه‌ای ایران، طراحی و در نرم­افزار OpenSEES مدل‌سازی شده­اند. در ادامه سناریوهای لرزه‌ای منفرد و متوالی بحرانی ثبت‌شده انتخاب و ضرایب رفتار قاب‌های خمشی فولادی بر اساس نتایج حاصل از تحلیل دینامیکی فزاینده، تاریخچه زمانی و استاتیکی ­غیرخطی استخراج شده است. نتیجه‌ها حاکی از کاهش 12 درصدی ضریب رفتار به دلیل وجود لرزه­های متوالی بحرانی در سناریوی لرزه­ای و افزایش خسارات در مقایسه با حالت منفرد است. در پایان به‌ منظور تخمین ضرایب رفتار کاهش‌ یافته قاب­های فولادی در معرض زمین­لرزه­های متوالی بحرانی، شبکه­های عصبی با استفاده از ویژگی­های قاب­ها، خصوصیات زلزله­های متوالی و ضرایب رفتار استخراج‌ شده از تحلیل­های فوق طراحی‌شده است. مقایسه ضرایب رفتار پیش‌بینی‌ شده با مقادیر واقعی بیانگر قابلیت مناسب شبکه­ها در تخمین نتیجه‌ها است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation of Behavior Factors for Steel Moment Frames under Critical Consecutive Earthquakes using Artificial Neural Network

نویسندگان [English]

  • Sahar Rouzrokh 1
  • Elham Rajabi 2
  • Gholamreza Ghodrati Amiri
1 School of Civil Engineering, Iran University of Science and Technology, Tehran, Iran
2 Department of Civil Engineering/ Tafresh University/ Tafresh/ Ian.
چکیده [English]

Structures that are located in seismic active regions are often subjected to successive earthquakes which occurred with significant PGA in a short time after each other. Studies about different responses of the structures under seismic sequence phenomena, such as structural damage, ductility, displacement, and behavioral factor indicate that the successive earthquakes, depending on their severity, have significant effects on the different demands of structures. For instance, the behavior factor (R factor) is one of the significant parameters in the study of structural response that decreases the lateral forces induced by earthquakes. Therefore, the structure with non-elastic deformations absorbs a great amount of earthquake energy, thus the earthquake energy decreases considerably. Regarding the potential loss of successive earthquakes and the importance of behavioral factors, this paper calculates and estimates this parameter for steel moment frames under critical successive earthquakes. Thus, three steel moment frames with 3, 7, and 11 stories are designed according to Iranian seismic codes (standard No. 2800) and modeled in OpenSEES software. After the design of these frames, critical seismic scenarios with/without successive shocks, are selected and the R factors of steel moment frames are calculated from the results of incremental dynamic analysis (IDA(, time history, and nonlinear static analysis (pushover). The results showed about a 12% reduction in the R factor and, also an increment of damages under successive earthquakes comparing to the individual one. Finally, to estimate the R factor, artificial neural networks are designed using frame properties, successive earthquakes, and extracted behavior factors. The comparison of predicted behavior factors with real values indicated the ability of networks for the estimation of results.

کلیدواژه‌ها [English]

  • Critical Successive Earthquakes
  • behavior factor
  • Steel Moment Frame
  • Incremental dynamic analysis
  • Artificial Neural Networks
[1] G.D. Hatzigeorgiou, A.A.J.S.d. Liolios, e. engineering, Nonlinear behaviour of RC frames under repeated strong ground motions, 30(10) (2010) 1010-1025.
[2] A.E.J.J.o.E.E. Abdelnaby, Fragility curves for RC frames subjected to Tohoku mainshock-aftershocks sequences, 22(5) (2018) 902-920.
[3] M. Shokrabadi, H.V.J.E.E. Burton, S. Dynamics, Building service life economic loss assessment under sequential seismic events, 47(9) (2018) 1864-1881.
[4] A. Faisal, T.A. Majid, G.D.J.S.D. Hatzigeorgiou, E. Engineering, Investigation of story ductility demands of inelastic concrete frames subjected to repeated earthquakes, 44 (2013) 42-53.
[5] D. Loulelis, G. Hatzigeorgiou, D.J.E. Beskos, Structures, Moment resisting steel frames under repeated earthquakes, 3(3-4) (2012) 231-248.
[6] G. Abdollahzadeh, A. Mohammadgholipour, E.J.J.o.E.E. Omranian, Seismic evaluation of steel moment frames under Mainshock–aftershock sequence designed by elastic design and PBPD methods, 23(10) (2019) 1605-1628.
[7] S.D. Vadeo, M.J.J.f.M.T.i.S. Waghmare, Technology, Nonlinear Analysis of RC Structure under Multiple Earthquakes, 5(09) (2019) 60-65.
[8] C. Amadio, M. Fragiacomo, S.J.E.e. Rajgelj, s. dynamics, The effects of repeated earthquake ground motions on the non‐linear response of SDOF systems, 32(2) (2003) 291-308.
[9] C.-H. Zhai, W.-P. Wen, S. Li, L.-L.J.B.o.E.E. Xie, The ductility-based strength reduction factor for the mainshock–aftershock sequence-type ground motions, 13(10) (2015) 2893-2914.
[10] G. Abdollahzadeh, A.J.A.J.o.C.E. Sadeghi, Earthquake recurrence effect on the response reduction factor of steel moment frame, 19(8) (2018) 993-1008.
[11] M. Iancovici, Inelastic Behavior of Buildings under Repeated Vrancea Earthquakes, in:  International Symposium on Strong Vrancea Earthquakes and Risk Mitigation, Bucharest, Romania, 2007.
[12] G.J.C. Hatzigeorgiou, structures, Behavior factors for nonlinear structures subjected to multiple near-fault earthquakes, 88(5-6) (2010) 309-321.
[13] Y. Zhang, J. Chen, C.J.S.D. Sun, E. Engineering, Damage-based strength reduction factor for nonlinear structures subjected to sequence-type ground motions, 92 (2017) 298-311
[14] G.G. Amiri, F.M.J.C. Dana, Structures, Introduction of the most suitable parameter for selection of critical earthquake, 83(8-9) (2005) 613-626.
[15] G.D. Hatzigeorgiou, D.E.J.E.S. Beskos, Inelastic displacement ratios for SDOF structures subjected to repeated earthquakes, 31(11) (2009) 2744-2755.
[16] R. Tahara, T. Majid, S. Zaini, A. Faisal, Effect of repeated earthquake on inelastic moment resisting concrete frame, in:  AIP Conference Proceedings, AIP Publishing LLC, 2017, pp. 020019.
[17] Malley, G. Dierlein, H. Krawinkler, J. Maffei, M. Pourzanjani, J. Wallace, J.J.A.T.C. Heintz, Modeling and acceptance criteria for seismic design and analysis of tall buildings,  (2010).
[18] Iranian Code of Practice for seismic Resistant Design of Buildings. 2015. (Standard No. 2800), 4rd Edition.  
[19] S.J.V.G.D. Committee, S.J. Venture, S.E.A.o. California, A.T. Council, C.U.f.R.i.E. Engineering, Recommended Seismic Evaluation and Upgrade Criteria for Existing Welded Steel Moment-frame Buildings, Federal Emergency Management Agency, 2000.
[20] C.K. Leung, M.Y. Ng, H.C.J.J.o.c.f.c. Luk, Empirical approach for determining ultimate FRP strain in FRP-strengthened concrete beams, 10(2) (2006) 125-138.
[21] C.-M.J.J.o.s.E. Uang, Establishing R (or R w) and C d factors for building seismic provisions, 117(1) (1991) 19-28.
[22] A. Mwafy, A.S.J.J.o.e.e. Elnashai, Calibration of force reduction factors of RC buildings, 6(02) (2002) 239-273.